
Kathrin Ohla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083976/publications.pdf Version: 2024-02-01

Κλτήριν Ομιλ

#	Article	IF	CITATIONS
1	Associations between Taste and Smell Sensitivity, Preference and Quality of Life in Healthy Aging—The NutriAct Family Study Examinations (NFSE) Cohort. Nutrients, 2022, 14, 1141.	4.1	7
2	The capacity and organization of gustatory working memory. Scientific Reports, 2022, 12, 8056.	3.3	2
3	A Bayesian adaptive algorithm (<scp>QUEST</scp>) to estimate olfactory threshold in hyposmic patients. Journal of Sensory Studies, 2022, 37, .	1.6	1
4	Cognitive enhancement effects of stimulants: a randomized controlled trial testing methylphenidate, modafinil, and caffeine. Psychopharmacology, 2021, 238, 441-451.	3.1	28
5	Durable memories and efficient neural coding through mnemonic training using the method of loci. Science Advances, 2021, 7, .	10.3	15
6	Flexible and dynamic representations of gustatory information. Current Opinion in Physiology, 2021, 20, 140-145.	1.8	3
7	Assessing the extent and timing of chemosensory impairments during COVID-19 pandemic. Scientific Reports, 2021, 11, 17504.	3.3	23
8	Recent Smell Loss Is the Best Predictor of COVID-19 Among Individuals With Recent Respiratory Symptoms. Chemical Senses, 2021, 46, .	2.0	119
9	Repeatability of Taste Recognition Threshold Measurements with QUEST and Quick Yes–No. Nutrients, 2020, 12, 24.	4.1	9
10	More Than Smell—COVID-19 Is Associated With Severe Impairment of Smell, Taste, and Chemesthesis. Chemical Senses, 2020, 45, 609-622.	2.0	375
11	Non-invasive recording from the human olfactory bulb. Nature Communications, 2020, 11, 648.	12.8	47
12	Psychobiology of Tasting and Its Role in Food Perception. , 2020, , 318-332.		1
13	Prefrontal Control Over Occipital Responses to Crossmodal Overlap Varies Across the Congruency Spectrum. Cerebral Cortex, 2019, 29, 3023-3033.	2.9	15
14	A bittersweet symphony: Evidence for tasteâ€sound correspondences without effects on taste qualityâ€specific perception. Journal of Neuroscience Research, 2019, 97, 267-275.	2.9	19
15	Estimation of Olfactory Sensitivity Using a Bayesian Adaptive Method. Nutrients, 2019, 11, 1278.	4.1	12
16	Food-Pics_Extended—An Image Database for Experimental Research on Eating and Appetite: Additional Images, Normative Ratings and an Updated Review. Frontiers in Psychology, 2019, 10, 307.	2.1	113
17	Recognizing Taste: Coding Patterns Along the Neural Axis in Mammals. Chemical Senses, 2019, 44, 237-247.	2.0	58
18	Hacking the Brain: Dimensions of Cognitive Enhancement. ACS Chemical Neuroscience, 2019, 10, 1137-1148.	3.5	69

Kathrin Ohla

#	Article	IF	CITATIONS
19	A new gustometer: Template for the construction of a portable and modular stimulator for taste and lingual touch. Behavior Research Methods, 2019, 51, 2733-2747.	4.0	11
20	Visual–Olfactory Interactions: Bimodal Facilitation and Impact on the Subjective Experience. Chemical Senses, 2018, 43, 329-339.	2.0	14
21	Superadditive and Subadditive Neural Processing of Dynamic Auditory-Visual Objects in the Presence of Congruent Odors. Chemical Senses, 2018, 43, 35-44.	2.0	10
22	Modulation of event-related potentials to food cues upon sensory-specific satiety. Physiology and Behavior, 2018, 196, 126-134.	2.1	4
23	Shorter-lived neural taste representations in obese compared to lean individuals. Scientific Reports, 2018, 8, 11027.	3.3	16
24	Delta activity encodes taste information in the human brain. NeuroImage, 2018, 181, 471-479.	4.2	20
25	As Soon as You Taste It: Evidence for Sequential and Parallel Processing of Gustatory Information. ENeuro, 2018, 5, ENEURO.0269-18.2018.	1.9	20
26	Changes in Gustatory Function and Taste Preference Following Weight Loss. Journal of Pediatrics, 2017, 182, 120-126.	1.8	26
27	Higher sensitivity to sweet and salty taste in obese compared to lean individuals. Appetite, 2017, 111, 158-165.	3.7	96
28	Rapid Estimation of Gustatory Sensitivity Thresholds with SIAM and QUEST. Frontiers in Psychology, 2017, 8, 981.	2.1	12
29	Perceived Odor–Taste Congruence Influences Intensity and Pleasantness Differently. Chemical Senses, 2016, 41, 677-684.	2.0	26
30	Ghrelin modulates encoding-related brain function without enhancing memory formation in humans. Neurolmage, 2016, 142, 465-473.	4.2	21
31	Superadditive opercular activation to food flavor is mediated by enhanced temporal and limbic coupling. Human Brain Mapping, 2015, 36, 1662-1676.	3.6	42
32	Nonlinear response speedup in bimodal visual-olfactory object identification. Frontiers in Psychology, 2015, 6, 1477.	2.1	14
33	Taste Quality Decoding Parallels Taste Sensations. Current Biology, 2015, 25, 890-896.	3.9	72
34	Feeling smart: Effects of caffeine and glucose on cognition, mood and self-judgment. Physiology and Behavior, 2015, 151, 629-637.	2.1	41
35	Food-pics: an image database for experimental research on eating and appetite. Frontiers in Psychology, 2014, 5, 617.	2.1	405
36	Verbal labels selectively bias brain responses to high-energy foods. NeuroImage, 2014, 87, 154-163.	4.2	14

KATHRIN OHLA

#	Article	IF	CITATIONS
37	Non-pharmacological cognitive enhancement. Neuropharmacology, 2013, 64, 529-543.	4.1	139
38	Sex differences in chemosensation: sensory or emotional?. Frontiers in Human Neuroscience, 2013, 7, 607.	2.0	41
39	A Dynamic Cortical Network Encodes Violations of Expectancy during Taste Perception. Journal of Neuroscience, 2012, 32, 1918-1919.	3.6	2
40	Time for Taste—A Review of the Early Cerebral Processing of Gustatory Perception. Chemosensory Perception, 2012, 5, 87-99.	1.2	42
41	Visual-Gustatory Interaction: Orbitofrontal and Insular Cortices Mediate the Effect of High-Calorie Visual Food Cues on Taste Pleasantness. PLoS ONE, 2012, 7, e32434.	2.5	55
42	Electrical neuroimaging reveals intensity-dependent activation of human cortical gustatory and somatosensory areas by electric taste. Biological Psychology, 2010, 85, 446-455.	2.2	41
43	Induced Gamma-band Activity Elicited by Visual Representation of Unattended Objects. Journal of Cognitive Neuroscience, 2009, 21, 42-57.	2.3	18
44	The Cortical Chronometry of Electrogustatory Event-related Potentials. Brain Topography, 2009, 22, 73-82.	1.8	23
45	Early electrophysiological markers of visual awareness in the human brain. NeuroImage, 2007, 37, 1329-1337.	4.2	14
46	Circles are different: The perception of Glass patterns modulates early event-related potentials. Vision Research, 2005, 45, 2668-2676.	1.4	27