
Ahmed A Shabana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10839571/publications.pdf Version: 2024-02-01

ΔΗΜΕΟ Δ ΣΗΛΒΛΝΑ

#	Article	IF	CITATIONS
1	Flexible Multibody Dynamics: Review of Past and Recent Developments. Multibody System Dynamics, 1997, 1, 189-222.	1.7	681
2	Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Theory. Journal of Mechanical Design, Transactions of the ASME, 2001, 123, 606-613.	1.7	390
3	Analysis of Thin Beams and Cables Using the Absolute Nodal Co-ordinate Formulation. Nonlinear Dynamics, 2006, 45, 109-130.	2.7	292
4	Three Dimensional Absolute Nodal Coordinate Formulation for Beam Elements: Implementation and Applications. Journal of Mechanical Design, Transactions of the ASME, 2001, 123, 614-621.	1.7	274
5	Title is missing!. Multibody System Dynamics, 2003, 9, 283-309.	1.7	174
6	A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotationsâ^—. Journal of Structural Mechanics, 1983, 11, 401-431.	0.7	162
7	Development of elastic force model for wheel/rail contact problems. Journal of Sound and Vibration, 2004, 269, 295-325.	2.1	148
8	Title is missing!. Nonlinear Dynamics, 1998, 16, 293-306.	2.7	147
9	Formulation of Three-Dimensional Joint Constraints Using the Absolute Nodal Coordinates. Nonlinear Dynamics, 2003, 31, 167-195.	2.7	127
10	Title is missing!. Multibody System Dynamics, 2001, 5, 21-54.	1.7	109
11	On the Computer Formulations of the Wheel/Rail Contact Problem. Nonlinear Dynamics, 2005, 40, 169-193.	2.7	102
12	Nonlinear dynamics of three-dimensional belt drives using the finite-element method. Nonlinear Dynamics, 2007, 48, 449-466.	2.7	102
13	Implicit and explicit integration in the solution ofÂtheÂabsolute nodal coordinate differential/algebraic equations. Nonlinear Dynamics, 2008, 54, 283-296.	2.7	102
14	Flexible Multibody Simulation and Choice of Shape Functions. Nonlinear Dynamics, 1999, 20, 361-380.	2.7	95
15	Three-dimensional absolute nodal co-ordinate formulation: plate problem. International Journal for Numerical Methods in Engineering, 1997, 40, 2775-2790.	1.5	88
16	Title is missing!. Multibody System Dynamics, 2002, 7, 357-387.	1.7	83
17	A Survey of Rail Vehicle Track Simulations and Flexible Multibody Dynamics. Nonlinear Dynamics, 2001, 26, 179-212.	2.7	79
18	Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity. Journal of Mechanical Design, Transactions of the ASME, 2003, 125, 342-350.	1.7	77

#	Article	IF	CITATIONS
19	Integration of B-spline geometry and ANCF finite element analysis. Nonlinear Dynamics, 2010, 61, 193-206.	2.7	70
20	Pantograph/Catenary Contact Formulations. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.0	67
21	Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mechanica, 2018, 229, 2923-2946.	1.1	66
22	On the integration of computer aided design and analysis using the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 2009, 22, 181-197.	1.7	65
23	Three-Dimensional Large Deformation Analysis of the Multibody Pantograph/Catenary Systems. Nonlinear Dynamics, 2005, 42, 199-215.	2.7	62
24	Title is missing!. Nonlinear Dynamics, 2001, 24, 183-204.	2.7	53
25	A rational finite element method based on the absolute nodal coordinate formulation. Nonlinear Dynamics, 2009, 58, 565-572.	2.7	50
26	Definition of ANCF Finite Elements. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	49
27	A Non-Incremental Nonlinear Finite Element Solution for Cable Problems. Journal of Mechanical Design, Transactions of the ASME, 2003, 125, 746-756.	1.7	48
28	Poisson modes and general nonlinear constitutive models in the large displacement analysis of beams. Multibody System Dynamics, 2007, 18, 375-396.	1.7	47
29	Analysis of warping deformation modes using higher order ANCF beam element. Journal of Sound and Vibration, 2016, 363, 428-445.	2.1	47
30	Use of independent rotation field in the large displacement analysis of beams. Nonlinear Dynamics, 2014, 76, 1829-1843.	2.7	46
31	Application of Plasticity Theory and Absolute Nodal Coordinate Formulation to Flexible Multibody System Dynamics. Journal of Mechanical Design, Transactions of the ASME, 2004, 126, 478-487.	1.7	44
32	Sparse matrix implicit numerical integration of the Stiff differential/algebraic equations: Implementation. Nonlinear Dynamics, 2011, 65, 369-382.	2.7	42
33	A nonlinear visco-elastic constitutive model for large rotation finite element formulations. Multibody System Dynamics, 2011, 26, 57-79.	1.7	40
34	Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dynamics, 2018, 91, 2171-2202.	2.7	40
35	Numerical Procedure for the Simulation of Wheel/Rail Contact Dynamics. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2001, 123, 168-178.	0.9	39
36	On the Use of Implicit Integration Methods and the Absolute Nodal Coordinate Formulation in the Analysis of Elasto-Plastic Deformation Problems. Nonlinear Dynamics, 2004, 37, 245-270.	2.7	38

Ahmed A Shabana

#	Article	IF	CITATIONS
37	A two-dimensional shear deformable ANCF consistent rotation-based formulation beam element. Nonlinear Dynamics, 2017, 87, 1031-1043.	2.7	38
38	Modelling of structural flexiblity in multibody railroad vehicle systems. Vehicle System Dynamics, 2013, 51, 1027-1058.	2.2	37
39	A New ANCF/CRBF Fully Parameterized Plate Finite Element. Journal of Computational and Nonlinear Dynamics, 2017, 12, .	0.7	37
40	Rational ANCF Thin Plate Finite Element. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	36
41	On the formulation of the planar ANCF triangular finite elements. Nonlinear Dynamics, 2017, 89, 1019-1045.	2.7	36
42	Coupled Deformation Modes in the Large Deformation Finite-Element Analysis: Problem Definition. Journal of Computational and Nonlinear Dynamics, 2007, 2, 146-154.	0.7	35
43	Contact force control in multibody pantograph/catenary systems. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 307-328.	0.5	35
44	Nonstructural geometric discontinuities in finite element/multibody system analysis. Nonlinear Dynamics, 2011, 66, 809-824.	2.7	34
45	Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dynamics, 2017, 89, 2905-2932.	2.7	31
46	Comparison between ANCF and B-spline surfaces. Multibody System Dynamics, 2013, 30, 119-138.	1.7	29
47	ANCF Tire Assembly Model for Multibody System Applications. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	27
48	A new multibody system approach for tire modeling using ANCF finite elements. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 69-84.	0.5	27
49	Slope discontinuities in the finite element absolute nodal coordinate formulation: gradient deficient elements. Multibody System Dynamics, 2008, 20, 239-249.	1.7	25
50	A train air brake force model: Locomotive automatic brake valve and brake pipe flow formulations. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227, 19-37.	1.3	25
51	A comparative study of joint formulations: application to multibody system tracked vehicles. Nonlinear Dynamics, 2013, 74, 783-800.	2.7	24
52	Effect of the centrifugal forces on the finite element eigenvalue solution of a rotating blade: a comparative study. Multibody System Dynamics, 2008, 19, 281-302.	1.7	23
53	A train air brake force model: Car control unit and numerical results. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2013, 227, 38-55.	1.3	23
54	Nonlinear dynamic analysis of parabolic leaf springs using ANCF geometry and data acquisition. Nonlinear Dynamics, 2018, 93, 2487-2515.	2.7	23

#	Article	IF	CITATIONS
55	Rational Finite Elements and Flexible Body Dynamics. Journal of Vibration and Acoustics, Transactions of the ASME, 2010, 132, .	1.0	22
56	Influence of rail flexibility in a wheel/rail wear prediction model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231, 57-74.	1.3	22
57	Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions. Journal of Computational and Nonlinear Dynamics, 2018, 13, .	0.7	22
58	Use of General Nonlinear Material Models in Beam Problems: Application to Belts and Rubber Chains. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	0.7	21
59	A Total Lagrangian ANCF Liquid Sloshing Approach for Multibody System Applications. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	21
60	Continuum-Based Geometry/Analysis Approach for Flexible and Soft Robotic Systems. Soft Robotics, 2018, 5, 613-621.	4.6	20
61	Prediction of the Pantograph/Catenary Wear Using Nonlinear Multibody System Dynamic Algorithms. Journal of Tribology, 2019, 141, .	1.0	20
62	Integration of Large Deformation Finite Element and Multibody System Algorithms. Journal of Computational and Nonlinear Dynamics, 2007, 2, 351-359.	0.7	18
63	Generalization of the strain-split method and evaluation of the nonlinear ANCF finite elements. Acta Mechanica, 2020, 231, 1365-1376.	1.1	18
64	Study of the ligament tension and cross-section deformation using nonlinear finite element/multibody system algorithms. Multibody System Dynamics, 2010, 23, 227-248.	1.7	17
65	Numerical study of the noninertial systems: application to train coupler systems. Nonlinear Dynamics, 2012, 68, 215-233.	2.7	17
66	Spatial ANCF/CRBF beam elements. Acta Mechanica, 2019, 230, 929-952.	1.1	17
67	Motion and shape control of soft robots and materials. Nonlinear Dynamics, 2021, 104, 165-189.	2.7	17
68	Soil Models and Vehicle System Dynamics. Applied Mechanics Reviews, 2013, 65, .	4.5	16
69	Analysis of high-frequency ANCF modes: Navier–Stokes physical damping and implicit numerical integration. Acta Mechanica, 2019, 230, 2581-2605.	1.1	16
70	Clamped end conditions and cross section deformation inÂtheÂfinite element absolute nodal coordinate formulation. Multibody System Dynamics, 2009, 21, 375-393.	1.7	15
71	Uniqueness of the Geometric Representation in Large Rotation Finite Element Formulations. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	0.7	15
72	Evaluation of breaking wave effects in liquid sloshing problems: ANCF/SPH comparative study. Nonlinear Dynamics, 2019, 97, 45-62.	2.7	15

#	Article	IF	CITATIONS
73	Rotation-based finite elements: reference-configuration geometry and motion description. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 105-126.	1.5	15
74	A nonlinear approach for modeling rail flexibility using the absolute nodal coordinate formulation. Nonlinear Dynamics, 2016, 83, 463-481.	2.7	14
75	A new nonlinear multibody/finite element formulation forÂknee joint ligaments. Nonlinear Dynamics, 2010, 60, 357-367.	2.7	13
76	Low Order Continuum-Based Liquid Sloshing Formulation for Vehicle System Dynamics. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	13
77	Integration of Geometry and Analysis for Vehicle System Applications: Continuum-Based Leaf Spring and Tire Assembly. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	13
78	Integration of geometry and analysis for the study of liquid sloshing in railroad vehicle dynamics. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2017, 231, 608-629.	0.5	13
79	ANCF curvature continuity: application to soft and fluid materials. Nonlinear Dynamics, 2020, 100, 1497-1517.	2.7	13
80	On the Use of the Restitution Condition in Flexible Body Dynamics. Nonlinear Dynamics, 2002, 30, 71-86.	2.7	12
81	Analytical and numerical investigation of wheel climb at large angle of attack. Nonlinear Dynamics, 2016, 83, 555-577.	2.7	12
82	Coupled Deformation Modes in the Large Deformation Finite Element Analysis: Generalization. Journal of Computational and Nonlinear Dynamics, 2009, 4, .	0.7	11
83	General Method for Modeling Slope Discontinuities and T-Sections Using ANCF Gradient Deficient Finite Elements. Journal of Computational and Nonlinear Dynamics, 2011, 6, .	0.7	11
84	Nadal's Formula and High Speed Rail Derailments. Journal of Computational and Nonlinear Dynamics, 2012, 7, .	0.7	11
85	Ideal Compliant Joints and Integration of Computer Aided Design and Analysis. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	11
86	Frenet oscillations and Frenet–Euler angles: curvature singularity and motion-trajectory analysis. Nonlinear Dynamics, 2021, 106, 1-19.	2.7	11
87	ANCF Finite Element/Multibody System Formulation of the Ligament/Bone Insertion Site Constraints. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	0.7	10
88	Modeling railroad track structures using the finite segment method. Acta Mechanica, 2012, 223, 1707-1721.	1.1	10
89	Effect of the Linearization of the Kinematic Equations in Railroad Vehicle System Dynamics. Journal of Computational and Nonlinear Dynamics, 2006, 1, 25-34.	0.7	9
90	A velocity transformation method for the nonlinear dynamic simulation of railroad vehicle systems. Nonlinear Dynamics, 2007, 51, 289-307.	2.7	9

#	Article	IF	CITATIONS
91	Relative orientation constraints in the nonlinear large displacement analysis: application to soft materials. Nonlinear Dynamics, 2020, 101, 2551-2575.	2.7	9
92	Geometry and differentiability requirements in multibody railroad vehicle dynamic formulations. Nonlinear Dynamics, 2006, 47, 249-261.	2.7	8
93	Numerical investigation of the slope discontinuities in large deformation finite element formulations. Nonlinear Dynamics, 2009, 58, 23-37.	2.7	8
94	Use of Finite Element and Finite Segment Methods in Modeling Rail Flexibility: A Comparative Study. Journal of Computational and Nonlinear Dynamics, 2012, 7, .	0.7	8
95	A Simple Procedure for the Solution of Three-Dimensional Wheel/Rail Conformal Contact Problem. Journal of Computational and Nonlinear Dynamics, 2014, 9, .	0.7	8
96	Mixed-Coordinate ANCF Rectangular Plate Finite Element. Journal of Computational and Nonlinear Dynamics, 2015, 10, .	0.7	8
97	Development and implementation of geometrically accurate reduced-order models: Convergence properties of planar beams. Journal of Sound and Vibration, 2019, 439, 457-478.	2.1	8
98	Cross-section deformation, geometric stiffening, and locking in the nonlinear vibration analysis of beams. Nonlinear Dynamics, 2022, 108, 1425-1445.	2.7	8
99	Use of Plasticity Theory in Flexible Multibody System Dynamics. , 2003, , 219.		7
100	Pantograph/Catenary Contact Force Control. , 2015, , .		7
101	Verification of a Total Lagrangian ANCF Solution Procedure for Fluid–Structure Interaction Problems. Journal of Verification, Validation and Uncertainty Quantification, 2017, 2, .	0.3	7
102	Euler angles and numerical representation of the railroad track geometry. Acta Mechanica, 2021, 232, 3121-3139.	1.1	7
103	Characterization and quantification of railroad spiral-joint discontinuities. Mechanics Based Design of Structures and Machines, 2022, 50, 1-25.	3.4	7
104	Automated visco-elastic analysis of large scale inertia-variant spatial vehicles. Computers and Structures, 1986, 22, 165-178.	2.4	6
105	Implementation of electronically controlled pneumatic brake formulation in longitudinal train dynamics algorithms. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2016, 230, 505-526.	0.5	6
106	Durability analysis and implementation of the floating frame of reference formulation. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2018, 232, 295-313.	0.5	5
107	ANCF Multiplicative-Decomposition Thermoelastic Approach for Arbitrary Geometry. Journal of Structural Engineering, 2021, 147, .	1.7	5
108	Prediction of dynamic stresses using flexible multibody system algorithms: Application to tracked vehicle upper structure. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2015, 229, 177-192.	0.5	4

#	Article	IF	CITATIONS
109	Evaluation of the accuracy of the rigid body approach in the prediction of the dynamic stresses of complex multibody systems. International Journal of Vehicle Performance, 2016, 2, 140.	0.2	4
110	Deformation basis and kinematic singularities of constrained systems. Mechanics Based Design of Structures and Machines, 2019, 47, 659-679.	3.4	4
111	Geometric self-centering and force self-balancing of railroad-vehicle hunting oscillations. Acta Mechanica, 2021, 232, 3323-3329.	1.1	4
112	Effect of the Wheel Geometric Design on the Nonlinear Dynamics of Railroad Vehicles. Journal of Mechanical Design, Transactions of the ASME, 2006, 128, 1130-1140.	1.7	3
113	Trajectory Coordinate Constraints in Multibody Railroad Vehicle Systems. Journal of System Design and Dynamics, 2007, 1, 481-490.	0.3	3
114	ANCF Continuum-Based Soil Plasticity for Wheeled Vehicle Off-Road Mobility. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	3
115	Frenet force analysis in performance evaluation of railroad vehicle systems. Acta Mechanica, 2021, 232, 4235-4259.	1.1	3
116	Non-Linear Dynamics of Multibody Systems with Generalized and Non-Generalized Coordinates. , 2003, , 1-16.		3
117	Development of Geometrically Accurate Continuum-Based Tire Models for Virtual Testing. Journal of Computational and Nonlinear Dynamics, 2019, 14, .	0.7	3
118	A geometrically accurate deformable-body approach for the analysis of robotic and parallel-mechanism systems. Mechanics Based Design of Structures and Machines, 2020, , 1-21.	3.4	2
119	Dynamics of Flexible Body Negotiating a Curve. Journal of Computational and Nonlinear Dynamics, 2016, 11, .	0.7	1
120	Effect of the tank car thickness on the nonlinear dynamics of railroad vehicles. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2017, 231, 3-29.	0.5	1
121	Convergence Characteristics of Geometrically Accurate Spatial Finite Elements. Journal of Computational and Nonlinear Dynamics, 2021, 16, .	0.7	1
122	Torsion and vertical curvature of motion-trajectory curves. Mechanics Based Design of Structures and Machines, 0, , 1-23.	3.4	1
123	Curvature Singularity of Space Curves and Its Relationship to Computational Mechanics. , 2022, 1, .		1
124	Space-curve Cartan matrix and exact differentiability of the curvature and torsion. Mechanics Based Design of Structures and Machines, 2023, 51, 63-83.	3.4	1
125	Spatial Finite Element Formulation for the Pantograph/Catenary Systems. , 2005, , 2133.		0
126	A Study of the Wheel Geometry Effect on the Dynamic Behavior of Railroad Vehicles. , 2005, , 2197.		0

Ahmed A Shabana

#	Article	IF	CITATIONS
127	Multibody System/Finite Element Simulation of Belt Drives and Rubber Tracked Vehicles. , 2008, , .		0
128	A Nonlinear Rail Vehicle Dynamics Computer Program SAMS/Rail: Part 1—Theory and Formulations. , 2009, , .		0
129	Use of General Nonlinear Material Models in Beam Problems: Application to Belt and Rubber Chains. , 2009, , .		0
130	Accurate Representation of the Rail Geometry for Multibody System Applications. Journal of Computational and Nonlinear Dynamics, 2010, 5, .	0.7	0
131	Ideal Compliant Joints and Integration of Computer Aided Design and Analysis. , 2014, , .		0
132	TLISMNI/Adams algorithm for the solution of the differential/algebraic equations of constrained dynamical systems. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2018, 232, 129-149.	0.5	0