Michael Gadermayr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10838630/publications.pdf

Version: 2024-02-01

1040056 794594 29 406 9 19 citations g-index h-index papers 31 31 31 520 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	On the acceptance of "fake―histopathology: A study on frozen sections optimized with deep learning. Journal of Pathology Informatics, 2022, 13, 100168.	1.7	3
2	Automated major psoas muscle volumetry in computed tomography using machine learning algorithms. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 355-361.	2.8	O
3	Large-scale extraction of interpretable features provides new insights into kidney histopathology – A proof-of-concept study. Journal of Pathology Informatics, 2022, 13, 100097.	1.7	6
4	Frozen-to-Paraffin: Categorization of Histological Frozen Sections by the Aid of Paraffin Sections and Generative Adversarial Networks. Lecture Notes in Computer Science, 2021, , 99-109.	1.3	5
5	Semi-Automatic MRI Muscle Volumetry to Diagnose and Monitor Hereditary and Acquired Polyneuropathies. Brain Sciences, 2021, 11, 202.	2.3	O
6	Image-to-Image Translation for Simplified MRI Muscle Segmentation. Frontiers in Radiology, 2021, 1, .	2.0	6
7	Generative Adversarial Networks in Digital Pathology: A Survey on Trends and Future Potential. Patterns, 2020, 1, 100089.	5.9	69
8	Semiâ€automated volumetry of MRI serves as a biomarker in neuromuscular patients. Muscle and Nerve, 2020, 61, 600-607.	2.2	8
9	Generative Adversarial Networks for Facilitating Stain-Independent Supervised and Unsupervised Segmentation: A Study on Kidney Histology. IEEE Transactions on Medical Imaging, 2019, 38, 2293-2302.	8.9	69
10	CNN cascades for segmenting sparse objects in gigapixel whole slide images. Computerized Medical Imaging and Graphics, 2019, 71, 40-48.	5.8	53
11	Domainâ€specific data augmentation for segmenting MR images of fatty infiltrated human thighs with neural networks. Journal of Magnetic Resonance Imaging, 2019, 49, 1676-1683.	3.4	23
12	Quest for the best endoscopic imaging modality for computer-assisted colonic polyp staging. World Journal of Gastroenterology, 2019, 25, 1197-1209.	3.3	4
13	Virtually Redying Histological Images with Generative Adversarial Networks to Facilitate Unsupervised Segmentation: A Proof-of-Concept Study. Lecture Notes in Computer Science, 2019, , 38-46.	1.3	0
14	A comprehensive study on automated muscle segmentation for assessing fat infiltration in neuromuscular diseases. Magnetic Resonance Imaging, 2018, 48, 20-26.	1.8	23
15	Which Way Round? A Study on the Performance of Stain-Translation for Segmenting Arbitrarily Dyed Histological Images. Lecture Notes in Computer Science, 2018, , 165-173.	1.3	24
16	Gradual Domain Adaptation for Segmenting Whole Slide Images Showing Pathological Variability. Lecture Notes in Computer Science, 2018, , 461-469.	1.3	1
17	Segmenting renal whole slide images virtually without training data. Computers in Biology and Medicine, 2017, 90, 88-97.	7.0	28
18	Evaluation of i-Scan Virtual Chromoendoscopy and Traditional Chromoendoscopy for the Automated Diagnosis of Colonic Polyps. Lecture Notes in Computer Science, 2017, , 59-71.	1.3	4

#	Article	IF	CITATIONS
19	Do We Need Large Annotated Training Data for Detection Applications in Biomedical Imaging? A Case Study in Renal Glomeruli Detection. Lecture Notes in Computer Science, 2016, , 18-26.	1.3	10
20	Computer-aided texture analysis combined with experts' knowledge: Improving endoscopic celiac disease diagnosis. World Journal of Gastroenterology, 2016, 22, 7124.	3.3	20
21	Comparing endoscopic imaging configurations in computer-aided celiac disease diagnosis., 2015,,.		3
22	Getting one step closer to fully automatized celiac disease diagnosis. , 2014, , .		6
23	Degradation adaptive texture classification. , 2014, , .		3
24	Scale-Adaptive Texture Classification. , 2014, , .		3
25	Quality Based Information Fusion in Fully Automatized Celiac Disease Diagnosis. Lecture Notes in Computer Science, 2014, , 666-677.	1.3	4
26	The Effect of Endoscopic Lens Distortion Correction on Physicians' Diagnosis Performance. Informatik Aktuell, 2014, , 174-179.	0.6	4
27	Shape Curvature Histogram: A Shape Feature for Celiac Disease Diagnosis. Lecture Notes in Computer Science, 2014, , 175-184.	1.3	11
28	Active contours methods with respect to Vickers indentations. Machine Vision and Applications, 2013, 24, 1183-1196.	2.7	9
29	Image Segmentation of Vickers Indentations Using Shape from Focus. Lecture Notes in Computer Science, 2012, , 149-157.	1.3	1