Kai Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10836620/publications.pdf Version: 2024-02-01

KALCHEN

#	Article	IF	CITATIONS
1	Rational Design of Three-Dimensional Graphene Encapsulated with Hollow FeP@Carbon Nanocomposite as Outstanding Anode Material for Lithium Ion and Sodium Ion Batteries. ACS Nano, 2017, 11, 11602-11616.	14.6	315
2	Core–shell MOF-derived N-doped yolk–shell carbon nanocages homogenously filled with ZnSe and CoSe ₂ nanodots as excellent anode materials for lithium- and sodium-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11016-11037.	10.3	173
3	High Entropy Alloy Electrocatalytic Electrode toward Alkaline Glycerol Valorization Coupling with Acidic Hydrogen Production. Journal of the American Chemical Society, 2022, 144, 7224-7235.	13.7	156
4	Enhancing ORR/OER active sites through lattice distortion of Fe-enriched FeNi3 intermetallic nanoparticles doped N-doped carbon for high-performance rechargeable Zn-air battery. Journal of Colloid and Interface Science, 2021, 582, 977-990.	9.4	99
5	A new generation of high performance anode materials with semiconductor heterojunction structure of SnSe/SnO2@Gr in lithium-ion batteries. Chemical Engineering Journal, 2018, 347, 552-562.	12.7	91
6	Polyaniline Encapsulated Amorphous V ₂ O ₅ Nanowireâ€Modified Multiâ€Functional Separators for Lithium–Sulfur Batteries. Small Methods, 2021, 5, e2001056.	8.6	86
7	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie - International Edition, 2021, 60, 21550-21557.	13.8	82
8	Mo ₂ C/C Hierarchical Doubleâ€Shelled Hollow Spheres as Sulfur Host for Advanced Liâ€S Batteries. Angewandte Chemie - International Edition, 2021, 60, 21512-21520.	13.8	76
9	High performance carbon-coated hollow Ni ₁₂ P ₅ nanocrystals decorated on GNS as advanced anodes for lithium and sodium storage. Journal of Materials Chemistry A, 2017, 5, 22316-22324.	10.3	65
10	A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water. Journal of Colloid and Interface Science, 2017, 490, 97-107.	9.4	64
11	Ultrasonic Plasma Engineering Toward Facile Synthesis of Single-Atom M-N4/N-Doped Carbon (M = Fe,) T 13, 60.	j ETQq1 1 27.0	0.784314 63
12	Engineering of Amorphous PtO _x Interface on Pt/WO ₃ Nanosheets for Ethanol Oxidation Electrocatalysis. Advanced Functional Materials, 2021, 31, 2100982.	14.9	63
13	A multidimensional and hierarchical carbon-confined cobalt phosphide nanocomposite as an advanced anode for lithium and sodium storage. Nanoscale, 2019, 11, 968-985.	5.6	50
14	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie - International Edition, 2020, 59, 23593-23597.	13.8	44
15	High efficient removal of fluoride from aqueous solution by a novel hydroxyl aluminum oxalate adsorbent. Journal of Colloid and Interface Science, 2016, 464, 238-245.	9.4	41
16	Iron-incorporated nitrogen-doped carbon materials as oxygen reduction electrocatalysts for zinc-air batteries. Chinese Journal of Catalysis, 2020, 41, 858-867.	14.0	41
17	Double-shelled hollow carbon nanospheres as enclosed electrochemical reactors to enhance the lithium storage performance of silicon nanodots. Journal of Materials Chemistry A, 2020, 8, 12502-12517.	10.3	37
18	Dual Porous 3D Zinc Anodes toward Dendrite-Free and Long Cycle Life Zinc-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 54990-54996.	8.0	30

Kai Chen

#	Article	IF	CITATIONS
19	Electron Matters: Recent Advances in Passivation and Applications of Black Phosphorus. Advanced Materials, 2021, 33, e2005924.	21.0	29
20	Tailored Ni ₂ P nanoparticles supported on N-doped carbon as a superior anode material for Li-ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 1881-1889.	6.0	22
21	Inâ€Situ Fabrication of Boneâ€Like CoSe ₂ Nanoâ€Thorn Loaded on Porous Carbon Cloth as a Flexible Electrode for Naâ€Ion Storage. Chemistry - an Asian Journal, 2020, 15, 1493-1499.	3.3	22
22	Mo ₂ C/C Hierarchical Doubleâ€6helled Hollow Spheres as Sulfur Host for Advanced Liâ€6 Batteries. Angewandte Chemie, 2021, 133, 21682-21690.	2.0	21
23	Promoting water splitting on arrayed molybdenum carbide nanosheets with electronic modulation. Journal of Materials Chemistry A, 2021, 9, 21440-21447.	10.3	21
24	MOFâ€derived Coreâ€Shell CoP@NC@TiO ₂ Composite as a Highâ€Performance Anode Material for Liâ€ion Batteries. Chemistry - an Asian Journal, 2021, 16, 322-328.	3.3	20
25	The encapsulation of MnFe ₂ O ₄ nanoparticles into the carbon framework with superior rate capability for lithium-ion batteries. Nanoscale, 2020, 12, 4445-4451.	5.6	18
26	Reversible Zn-quinone battery with harvesting electrochemical neutralization energy. Journal of Power Sources, 2019, 428, 37-43.	7.8	17
27	Highâ€Voltage Rechargeable Alkali–Acid Zn–PbO ₂ Hybrid Battery. Angewandte Chemie, 2020, 132, 23799-23803.	2.0	16
28	Core-double shells heterostructure Î ³ -Fe2O3@FeS2@C nanocubics with energy level matching double interfaces to boost the oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 885, 160986.	5.5	13
29	Holey amorphous FeCoO-coated black phosphorus for robust polysulfide adsorption and catalytic conversion in lithium–sulfur batteries. Journal of Materials Chemistry A, 2022, 10, 11676-11683.	10.3	13
30	Hybrid Molybdenum Carbide/Heteroatom-Doped Carbon Electrocatalyst for Advanced Oxygen Evolution Reaction in Hydrogen Production. Catalysts, 2020, 10, 1290.	3.5	10
31	N/B Co-doped carbon as metal-free cathode catalyst for high-performance asymmetric neutral-alkaline microbial fuel cell. Electrochimica Acta, 2021, 389, 138518.	5.2	10
32	Hierarchical Carbon/Metal Nanostructure with a Combination of 0D Nanoparticles, 1D Nanofibers, and 2D Nanosheets: An Efficient Bifunctional Catalyst for Zincâ€Air Batteries. ChemElectroChem, 2021, 8, 1107-1116.	3.4	7
33	Highâ€Performance Flow Alkaliâ€Al/Acid Hybrid Fuel Cell for Highâ€Rate H ₂ Generation. Advanced Functional Materials, 2021, 31, 2103248.	14.9	7
34	Oxygen Vacancyâ€Enhanced Ternary Nickelâ€Tungstenâ€Cerium Metal Alloyâ€Oxides for Efficient Alkaline Electrochemical Full Cell Water Splitting Using Anion Exchange Membrane. ChemElectroChem, 2022, 9, .	3.4	6
35	Manipulation of the Magnetic Properties of Janus WSSe Monolayer by the Adsorption of Transition Metal Atoms. Nanoscale Research Letters, 2021, 16, 104.	5.7	5
36	Graphitic carbon nanochambers interweaved porous yolk-shell skeleton for long-lifespan lithium-ion batteries. Journal of Alloys and Compounds, 2021, 898, 162831.	5.5	5

Kai Chen

#	Article	IF	CITATIONS
37	Oxygen vacancy defect tungsten-oxide-quantum-dot-modified nitrogen-doped graphene with interfacial tiny primitives to boost oxygen reduction reaction. Journal of Alloys and Compounds, 2022, 908, 164588.	5.5	5
38	Strategic Structure Tuning of Yolkâ€Shell Microcages for Efficient Nitrogen Fixation. ChemSusChem, 2021, 14, 2521-2528.	6.8	4
39	Scalable Synthesis of Tungsten Disulfide Nanosheets for Alkaliâ€Acid Electrocatalytic Sulfion Recycling and H ₂ Generation. Angewandte Chemie, 2021, 133, 21720-21727.	2.0	4
40	Asymmetric Neutralâ€alkaline Microbial Electrolysis Cells for Hydrogen Production. ChemElectroChem, 2022, 9, .	3.4	2