Joseph L Woo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083625/publications.pdf

Version: 2024-02-01

1040056 1281871 12 456 9 11 citations h-index g-index papers 16 16 16 834 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Competing Photochemical Effects in Aqueous Carbonyl/Ammonium Brown Carbon Systems. ACS Earth and Space Chemistry, 2021, 5, 1902-1915.	2.7	6
2	Brown Carbon Formation Potential of the Biacetyl–Ammonium Sulfate Reaction System. ACS Earth and Space Chemistry, 2020, 4, 1104-1113.	2.7	9
3	Modeling of Carbonyl/Ammonium Sulfate Aqueous Brown Carbon Chemistry via UV/Vis Spectral Decomposition. Atmosphere, 2020, 11, 358.	2.3	4
4	<i>In Situ</i> Surface Tension Measurements of Hanging Droplet Methylglyoxal/Ammonium Sulfate Aerosol Mimics under Photooxidative Conditions. ACS Earth and Space Chemistry, 2019, 3, 1208-1215.	2.7	9
5	Concept for an electrostatic focusing device for continuous ambient pressure aerosol concentration. Atmospheric Measurement Techniques, 2019, 12, 3395-3402.	3.1	0
6	Impact of Aerosol-Cloud Cycling on Aqueous Secondary Organic Aerosol Formation. Atmosphere, 2019, 10, 666.	2.3	17
7	simpleGAMMA v1.0 – a reduced model of secondary organic aerosol formation in the aqueous aerosol phase (aaSOA). Geoscientific Model Development, 2015, 8, 1821-1829.	3.6	35
8	Model Analysis of Secondary Organic Aerosol Formation by Glyoxal in Laboratory Studies: The Case for Photoenhanced Chemistry. Environmental Science & Environmental Science & 2014, 48, 11919-11925.	10.0	32
9	Inorganic salts interact with oxalic acid in submicron particles to form material with low hygroscopicity and volatility. Atmospheric Chemistry and Physics, 2014, 14, 5205-5215.	4.9	57
10	Aqueous aerosol SOA formation: impact on aerosol physical properties. Faraday Discussions, 2013, 165, 357.	3.2	49
11	Self-limited uptake of α-pinene oxide to acidic aerosol: the effects of liquid–liquid phase separation and implications for the formation of secondary organic aerosol and organosulfates from epoxides. Atmospheric Chemistry and Physics, 2013, 13, 8255-8263.	4.9	31
12	Aqueous-Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric Aerosols: A Modeling Study. Environmental Science & Eamp; Technology, 2012, 46, 8075-8081.	10.0	205