MiloÅ; Trajković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083533/publications.pdf

Version: 2024-02-01

ΜιιοΔ: Τρλικονιät

#	Article	IF	CITATIONS
1	Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering. ELife, 2020, 9, .	6.0	33
2	Enantio- and regioselective <i>ene</i> -reductions using F ₄₂₀ H ₂ -dependent enzymes. Chemical Communications, 2018, 54, 11208-11211.	4.1	29
3	Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angewandte Chemie - International Edition, 2020, 59, 4869-4872.	13.8	29
4	Exploring the Selective Demethylation of Aryl Methyl Ethers with a <i>Pseudomonas</i> Rieske Monooxygenase. ChemBioChem, 2019, 20, 118-125.	2.6	24
5	Chemoenzymatic Synthesis of an Unnatural Deazaflavin Cofactor That Can Fuel F ₄₂₀ -Dependent Enzymes. ACS Catalysis, 2019, 9, 6435-6443.	11.2	22
6	The Biocatalytic Synthesis of Syringaresinol from 2,6-Dimethoxy-4-allylphenol in One-Pot Using a Tailored Oxidase/Peroxidase System. ACS Catalysis, 2018, 8, 5549-5552.	11.2	20
7	A Biocatalytic Oneâ€Pot Approach for the Preparation of Lignin Oligomers Using an Oxidase/Peroxidase Cascade Enzyme System. Advanced Synthesis and Catalysis, 2017, 359, 3354-3361.	4.3	18
8	Total synthesis of (+)-swainsonine and (+)-8-epi-swainsonine. RSC Advances, 2014, 4, 53722-53724.	3.6	15
9	Mining the Genome of Streptomyces leeuwenhoekii: Two New Type I Baeyer–Villiger Monooxygenases From Atacama Desert. Frontiers in Microbiology, 2018, 9, 1609.	3.5	15
10	Multienzymatic Stereoselective Reduction of Tetrasubstituted Cyclic Enones to Halohydrins with Three Contiguous Stereogenic Centers. ACS Catalysis, 2020, 10, 13050-13057.	11.2	15
11	Computational Design of Enantiocomplementary Epoxide Hydrolases for Asymmetric Synthesis of Aliphatic and Aromatic Diols. ChemBioChem, 2020, 21, 1893-1904.	2.6	15
12	An aldol approach to the enantioselective synthesis of (â^')-oseltamivir phosphate. Organic and Biomolecular Chemistry, 2011, 9, 6927.	2.8	14
13	Formal Synthesis of (–)-Oseltamivir Phosphate. Synthesis, 2013, 45, 389-395.	2.3	8
14	Production of Hydroxy Acids: Selective Double Oxidation of Diols by Flavoprotein Alcohol Oxidase. Angewandte Chemie, 2020, 132, 4899-4902.	2.0	7
15	Facile Stereoselective Reduction of Prochiral Ketones by using an F ₄₂₀ â€dependent Alcohol Dehydrogenase. ChemBioChem, 2021, 22, 156-159.	2.6	7
16	A convenient procedure for the preparation of Garner's aldehyde. Tetrahedron: Asymmetry, 2012, 23, 602-604.	1.8	5
17	Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. Journal of Biological Chemistry, 2020, 295, 16013-16022.	3.4	5
18	Discovery, Biocatalytic Exploration and Structural Analysis of a 4â€Ethylphenol Oxidase from <i>Gulosibacter chungangensis</i> . ChemBioChem, 2021, 22, 3225-3233.	2.6	5

#	Article	IF	CITATIONS
19	Enantioselective Synthesis of the Platensimycin Core by Silver(I)â€Promoted Cyclization of Δ6â€Î±â€lodoketone. Chemistry - A European Journal, 2019, 25, 4340-4344.	3.3	3
20	Introducing an Artificial Deazaflavin Cofactor in <i>Escherichia coli</i> and <i>Saccharomyces cerevisiae</i> . ACS Synthetic Biology, 2022, 11, 938-952.	3.8	3
21	Chemoenzymatic Synthesis of the Most Pleasant Stereoisomer of Jessemal. Journal of Organic Chemistry, 2022, , .	3.2	1

Total Synthesis of $(\hat{a} \in \mathbb{W} + \hat{a} \in \mathbb{W})$ -Swainsonine, $(\hat{a} \in \mathbb{W})$ - Swainsonine, $(\hat{a} \in \mathbb{W} + \hat{a} \in \mathbb{W})$ -8-<i>epi</i><Swainsonine and $(\hat{a} \in \mathbb{W} + \hat{a} \in \mathbb{W})$ 22Dideoxy-Imino-Lyxitol by an Organocatalyzed Aldolization/Reductive Amination SequenceNatural0.50Product Communications, 2022, 17, 1934578X2210916.