
Andreas Wack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/108334/publications.pdf Version: 2024-02-01

ANDDEAS WACK

#	Article	IF	CITATIONS
1	Type I interferons in infectious disease. Nature Reviews Immunology, 2015, 15, 87-103.	22.7	1,902
2	Type I and III interferons disrupt lung epithelial repair during recovery from viral infection. Science, 2020, 369, 712-717.	12.6	333
3	Pathogenic potential of interferon $\hat{I}\pm\hat{I}^2$ in acute influenza infection. Nature Communications, 2014, 5, 3864.	12.8	315
4	Guarding the frontiers: the biology of type III interferons. Nature Immunology, 2015, 16, 802-809.	14.5	279
5	Type I and Type III Interferons Drive Redundant Amplification Loops to Induce a Transcriptional Signature in Influenza-Infected Airway Epithelia. PLoS Pathogens, 2013, 9, e1003773.	4.7	229
6	<scp>IFN</scp> λ is a potent antiâ€influenza therapeutic without the inflammatory side effects of <scp>IFN</scp> α treatment. EMBO Molecular Medicine, 2016, 8, 1099-1112.	6.9	228
7	Microbiota-Driven Tonic Interferon Signals in Lung Stromal Cells Protect from Influenza Virus Infection. Cell Reports, 2019, 28, 245-256.e4.	6.4	208
8	Influenza-induced monocyte-derived alveolar macrophages confer prolonged antibacterial protection. Nature Immunology, 2020, 21, 145-157.	14.5	193
9	COVID-19 and emerging viral infections: The case for interferon lambda. Journal of Experimental Medicine, 2020, 217, .	8.5	177
10	The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. Journal of Experimental Medicine, 2014, 211, 635-642.	8.5	168
11	The interferon landscape along the respiratory tract impacts the severity of COVID-19. Cell, 2021, 184, 4953-4968.e16.	28.9	165
12	Disease-Promoting Effects of Type I Interferons in Viral, Bacterial, and Coinfections. Journal of Interferon and Cytokine Research, 2015, 35, 252-264.	1.2	154
13	A Serpin Shapes the Extracellular Environment to Prevent Influenza A Virus Maturation. Cell, 2015, 160, 631-643.	28.9	137
14	TRAIL ⁺ monocytes and monocyteâ€related cells cause lung damage and thereby increase susceptibility to influenza– <i> <scp>S</scp> treptococcus pneumoniae </i> coinfection. EMBO Reports, 2015, 16, 1203-1218.	4.5	82
15	Tissue-specific and interferon-inducible expression of nonfunctional ACE2 through endogenous retroelement co-option. Nature Genetics, 2020, 52, 1294-1302.	21.4	82
16	Host-directed immunotherapy of viral and bacterial infections: past, present and future. Nature Reviews Immunology, 2023, 23, 121-133.	22.7	71
17	Transcriptional profiling unveils type I and II interferon networks in blood and tissues across diseases. Nature Communications, 2019, 10, 2887.	12.8	65
18	The Transcription Factor E4BP4 Is Not Required for Extramedullary Pathways of NK Cell Development. Journal of Immunology, 2014, 192, 2677-2688.	0.8	51

ANDREAS WACK

#	Article	IF	CITATIONS
19	Teaching Old Dogs New Tricks? The Plasticity of Lung Alveolar Macrophage Subsets. Trends in Immunology, 2020, 41, 864-877.	6.8	51
20	Multiple sites of post-activation CD8+ T cell disposal. European Journal of Immunology, 1997, 27, 577-583.	2.9	45
21	Natural amines inhibit activation of human plasmacytoid dendritic cells through CXCR4 engagement. Nature Communications, 2017, 8, 14253.	12.8	33
22	Critical requirement for BCR, BAFF, and BAFFR in memory B cell survival. Journal of Experimental Medicine, 2021, 218, .	8.5	31
23	Intranasal Administration of CpG Induces a Rapid and Transient Cytokine Response Followed by Dendritic and Natural Killer Cell Activation and Recruitment in the Mouse Lung. Journal of Innate Immunity, 2010, 2, 144-159.	3.8	26
24	A family of conserved bacterial virulence factors dampens interferon responses by blocking calcium signaling. Cell, 2022, 185, 2354-2369.e17.	28.9	26
25	Multiple Levels of Control Determine How E4bp4/Nfil3 Regulates NK Cell Development. Journal of Immunology, 2018, 200, 1370-1381.	0.8	25
26	The aryl hydrocarbon receptor controls cyclin O to promote epithelial multiciliogenesis. Nature Communications, 2016, 7, 12652.	12.8	23
27	Monocyte and dendritic cell defects in COVID-19. Nature Cell Biology, 2021, 23, 445-447.	10.3	23
28	Selective Janus kinase inhibition preserves interferon-λ–mediated antiviral responses. Science Immunology, 2021, 6, .	11.9	16
29	Recruitment of dendritic cell progenitors to foci of influenza A virus infection sustains immunity. Science Immunology, 2021, 6, eabi9331.	11.9	14
30	Themis2 Is Not Required for B Cell Development, Activation, and Antibody Responses. Journal of Immunology, 2014, 193, 700-707.	0.8	12
31	A TLR7 antagonist restricts interferon-dependent and -independent immunopathology in a mouse model of severe influenza. Journal of Experimental Medicine, 2021, 218, .	8.5	10
32	Influenza A induces lactate formation to inhibit type I IFN in primary human airway epithelium. IScience, 2021, 24, 103300.	4.1	10
33	Rotavirus susceptibility of antibiotic-treated mice ascribed to diminished expression of interleukin-22. PLoS ONE, 2021, 16, e0247738.	2.5	9
34	Monocytes work harder under pressure. Nature Immunology, 2019, 20, 1422-1424.	14.5	6
35	An ace model for SARS-CoV-2 infection. Journal of Experimental Medicine, 2020, 217, .	8.5	4
36	Interfering with transmission. ELife, 2018, 7, .	6.0	2

#	Article	IF	CITATIONS
37	Anti-type I interferon antibodies as a cause of severe COVID-19. , 0, 11, .		2
38	Stop the executioners. Nature Immunology, 2015, 16, 6-8.	14.5	1