
Sreedevi Upadhyayula, U Sridevi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10832714/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Deciphering Mn modulated structure-activity interplay and rational statistical analysis for CO2 rich syngas hydrogenation to clean methanol. Journal of Cleaner Production, 2022, 340, 130794.	9.3	3
2	A review on the development of supported non-noble metal catalysts for the endothermic high temperature sulfuric acid decomposition step in the Iodine–Sulfur cycle for hydrogen production. International Journal of Hydrogen Energy, 2022, 47, 14186-14210.	7.1	10
3	Insights into enhanced stability and activity of silica modified SiC supported iron oxide catalyst in sulfuric acid decomposition. Applied Catalysis B: Environmental, 2021, 284, 119613.	20.2	12
4	A machine learning approach to improve ignition properties of high-ash Indian coals by solvent extraction and coal blending. Chemical Engineering Journal, 2021, 413, 127385.	12.7	23
5	Acetalization of 5-hydroxymethyl furfural into biofuel additive cyclic acetal using protic ionic liquid catalyst- A thermodynamic and kinetic analysis. Renewable Energy, 2021, 167, 282-293.	8.9	18
6	Cellulose conversion to biofuel precursors using conjugated ionic liquid catalyst: An experimental and DFT studyâ€. Applied Catalysis A: General, 2021, 610, 117951.	4.3	11
7	Investigation of physical parameters of crude oils and their impact on kinematic viscosity of vacuum residue and heavy product blends for crude oil selection. Journal of the Taiwan Institute of Chemical Engineers, 2021, 120, 33-42.	5.3	8
8	High temperature sulfuric acid decomposition in iodine-sulfur processthermodynamics, concentrator and reactor, product separation, materials, and energy analysis. International Journal of Hydrogen Energy, 2021, 46, 34148-34174.	7.1	8
9	Synthesis of an oxygenated fuel additive from a waste biomass derived aldehyde using a green catalyst: an experimental and DFT study. Sustainable Energy and Fuels, 2020, 4, 2924-2936.	4.9	9
10	2nd generation biomass derived glucose conversion to 5-hydroxymethylfurfural and levulinic acid catalyzed by ionic liquid and transition metal sulfate: Elucidation of kinetics and mechanism. Journal of Cleaner Production, 2020, 256, 120292.	9.3	38
11	Framework development and modeling of the thermodynamics for aqueous sulfuric acid decomposition. Journal of Molecular Liquids, 2019, 291, 111215.	4.9	5
12	Kinetic modeling and simulation of catalyst pellet in the high temperature sulfuric acid decomposition section of Iodine-Sulfur process. International Journal of Hydrogen Energy, 2019, 44, 30850-30864.	7.1	20
13	Evaluation of materials of construction for the sulfuric acid decomposition section in the sulfur–iodine (S–I) cycle for hydrogen production: Some preliminary studies on selected materials. Journal of Chemical Sciences, 2019, 131, 1.	1.5	5
14	Biomass-derived CO2 rich syngas conversion to higher hydrocarbon via Fischer-Tropsch process over Fe–Co bimetallic catalyst. International Journal of Hydrogen Energy, 2019, 44, 27741-27748.	7.1	38
15	Mechanistic insights into upgrading of biomass-derived phenolic compounds: Comparative study of the impact of Lewis acidity in Zn loaded FAU zeolite on reaction mechanism. Chemical Engineering Journal, 2019, 377, 120236.	12.7	6
16	Effect of linkers (aliphatic/ aromatic) and anions on the activity of sulfonic acid functionalized ionic liquids towards catalyzing the hydrolysis of microcrystalline cellulose-an experimental and theoretical study. Renewable Energy, 2018, 121, 590-596.	8.9	5
17	A structure–activity relationship study using DFT analysis of Bronsted–Lewis acidic ionic liquids and synergistic effect of dual acidity in one-pot conversion of glucose to value-added chemicals. New Journal of Chemistry, 2018, 42, 1423-1430.	2.8	15
18	Synergistic Bronsted‣ewis Acidity Effect on Upgrading Biomassâ€Derived Phenolic Compounds: Statistical Optimization of Process Parameters, Kinetic Investigations and DFT Study. ChemistrySelect, 2018, 3, 634-647.	1.5	7

Sreedevi Upadhyayula, U

#	Article	IF	CITATIONS
19	Hydrothermal conversion of glucose to levulinic acid using multifunctional ionic liquids: effects of metal ion co-catalysts on the product yield. New Journal of Chemistry, 2018, 42, 228-236.	2.8	33
20	Prediction of crude oil blends compatibility and blend optimization for increasing heavy oil processing. Fuel Processing Technology, 2018, 177, 309-327.	7.2	40
21	Thermodynamic Insights into Valorization of Biomass-Derived Oxygenates and Reconciliation with Experimental Study. Journal of Chemical & Engineering Data, 2018, 63, 2197-2210.	1.9	7
22	Upgrading of HMF and Biomassâ€Derived Acids into HMF Esters Using Bifunctional Ionic Liquid Catalysts under Solvent Free Conditions. ChemistrySelect, 2018, 3, 6242-6248.	1.5	22
23	An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. International Journal of Biological Macromolecules, 2017, 97, 489-502.	7.5	51
24	Synergistic Effect of Fe–Co Bimetallic Catalyst on FTS and WGS Activity in the Fischer–Tropsch Process: A Kinetic Study. Industrial & Engineering Chemistry Research, 2017, 56, 4659-4671.	3.7	27
25	Mechanistic insights into solvent induced alkylation of p-cresol with tert-butyl alcohol using Brönsted acidic ionic liquids. Molecular Catalysis, 2017, 433, 175-184.	2.0	12
26	Efficient conversion of glucose to HMF using organocatalysts with dual acidic and basic functionalities - A mechanistic and experimental study. Fuel Processing Technology, 2017, 162, 30-36.	7.2	48
27	Synthesis of C5+ hydrocarbons from low H2/CO ratio syngas over silica supported bimetallic Fe-Co catalyst. Catalysis Today, 2017, 291, 133-145.	4.4	27
28	Synergistic effect of chloro and sulphonic acid groups on the hydrolysis of microcrystalline cellulose under benign conditions. Carbohydrate Polymers, 2017, 159, 146-151.	10.2	18
29	Zn-loaded HY zeolite as active catalyst for iso-propylation of biomass-derived phenolic compounds: A comparative study on the effect of acidity and porosity of zeolites. Molecular Catalysis, 2017, 441, 122-133.	2.0	21
30	Continuous fixed-bed column study for the removal of nitrate from water using chitosan/alumina composite. Journal of Water Process Engineering, 2016, 12, 58-65.	5.6	71
31	Hydrolysis of microcrystalline cellulose using functionalized Bronsted acidic ionic liquids – A comparative study. Carbohydrate Polymers, 2016, 135, 280-284.	10.2	59
32	Highly efficient alkylation of phenol with tert-butyl alcohol using environmentally benign Bronsted acidic ionic liquids. Applied Catalysis A: General, 2015, 506, 228-236.	4.3	24
33	Uniform Mesoporous Silicoaluminophosphate Derived by Vapor Phase Treatment: Its Catalytic and Kinetic Studies in Hydroisomerization of 1-Octene. Journal of Physical Chemistry C, 2014, 118, 27961-27972.	3.1	31
34	Mesoporous SAPO-5 (MESO-SAPO-5): a potential catalyst for hydroisomerisation of 1-octene. RSC Advances, 2014, 4, 8727.	3.6	34
35	Kinetic studies of sulfuric acid decomposition over Al–Fe2O3 catalyst in the sulfur-iodine cycle for hydrogen production. International Journal of Hydrogen Energy, 2012, 37, 3586-3594.	7.1	33
36	Alkylation of p-cresol with tert-butyl alcohol using benign Bronsted acidic ionic liquid catalyst. Journal of Molecular Catalysis A, 2010, 321, 34-41.	4.8	40