
Eva-Stina Edholm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10832455/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunoglobulin D enhances immune surveillance by activating antimicrobial, proinflammatory and B cell–stimulating programs in basophils. Nature Immunology, 2009, 10, 889-898.	14.5	362
2	Identification of Two IgD+ B Cell Populations in Channel Catfish, <i>Ictalurus punctatus</i> . Journal of Immunology, 2010, 185, 4082-4094.	0.8	156
3	Insights into the function of IgD. Developmental and Comparative Immunology, 2011, 35, 1309-1316.	2.3	90
4	Channel catfish, Ictalurus punctatus, CD4-like molecules. Developmental and Comparative Immunology, 2007, 31, 172-187.	2.3	81
5	Evolutionary Aspects of Macrophages Polarization. Results and Problems in Cell Differentiation, 2017, 62, 3-22.	0.7	72
6	Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14342-14347.	7.1	60
7	Identification of IgÏ f and Igλ in channel catfish, Ictalurus punctatus, and Igλ in Atlantic cod, Gadus morhua. Immunogenetics, 2009, 61, 353-370.	2.4	56
8	Immunoglobulin light (IgL) chains in ectothermic vertebrates. Developmental and Comparative Immunology, 2011, 35, 906-915.	2.3	45
9	Evolution of innate-like T cells and their selection by MHC class I-like molecules. Immunogenetics, 2016, 68, 525-536.	2.4	32
10	Inflammation-Induced Reactivation of the Ranavirus Frog Virus 3 in Asymptomatic Xenopus laevis. PLoS ONE, 2014, 9, e112904.	2.5	28
11	B cell receptor accessory molecules in the channel catfish, Ictalurus punctatus. Developmental and Comparative Immunology, 2008, 32, 1385-1397.	2.3	27
12	Characterization of anti-channel catfish IgL σ monoclonal antibodies. Veterinary Immunology and Immunopathology, 2010, 135, 325-328.	1.2	24
13	A critical role of non-classical MHC in tumor immune evasion in the amphibian Xenopus model. Carcinogenesis, 2014, 35, 1807-1813.	2.8	24
14	A prominent role for invariant T cells in the amphibian Xenopus laevis tadpoles. Immunogenetics, 2014, 66, 513-523.	2.4	24
15	Nonclassical MHC-Restricted Invariant Vα6 T Cells Are Critical for Efficient Early Innate Antiviral Immunity in the Amphibian <i>Xenopus laevis</i> . Journal of Immunology, 2015, 195, 576-586.	0.8	24
16	Unusual evolutionary conservation and further species-specific adaptations of a large family of nonclassical MHC class Ib genes across different degrees of genome ploidy in the amphibian subfamily Xenopodinae. Immunogenetics, 2014, 66, 411-426.	2.4	23
17	Xenopus-FV3 host-pathogen interactions and immune evasion. Virology, 2017, 511, 309-319.	2.4	22
18	Exploring the functions of nonclassical MHC class Ib genes in Xenopus laevis by the CRISPR/Cas9 system. Developmental Biology, 2017, 426, 261-269.	2.0	22

Eva-Stina Edholm

#	Article	IF	CITATIONS
19	Ranavirus Host Immunity and Immune Evasion. , 2015, , 141-170.		19
20	Distinct MHC class I-like interacting invariant T cell lineage at the forefront of mycobacterial immunity uncovered in Xenopus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4023-E4031.	7.1	17
21	Evolution of nonclassical MHC-dependent invariant T cells. Cellular and Molecular Life Sciences, 2014, 71, 4763-4780.	5.4	16
22	Channel catfish CD8α and CD8β co-receptors: Characterization, expression and polymorphism. Fish and Shellfish Immunology, 2011, 30, 894-901.	3.6	15
23	Effective RNAi-mediated β2-microglobulin loss of function by transgenesis in <i>Xenopus laevis</i> . Biology Open, 2013, 2, 335-342.	1.2	15
24	Semi-solid tumor model in Xenopus laevis/gilli cloned tadpoles for intravital study of neovascularization, immune cells and melanophore infiltration. Developmental Biology, 2015, 408, 205-212.	2.0	13
25	Distinct Host–Mycobacterial Pathogen Interactions between Resistant Adult and Tolerant Tadpole Life Stages of Xenopus laevis. Journal of Immunology, 2019, 203, 2679-2688.	0.8	13
26	Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor. International Journal of Developmental Biology, 2014, 58, 757-766.	0.6	12
27	Microbial Danger Signals Control Transcriptional Induction of Distinct MHC Class I L Lineage Genes in Atlantic Salmon. Frontiers in Immunology, 2019, 10, 2425.	4.8	9
28	Identification and characterization of TCRÎ ³ and TCRδ chains in channel catfish, Ictalurus punctatus. Immunogenetics, 2014, 66, 545-561.	2.4	8
29	Flow Cytometric Analysis of <i>Xenopus</i> Immune Cells. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot097600.	0.3	8
30	Editorial: Innate Immunity in Aquatic Vertebrates. Frontiers in Immunology, 2019, 10, 2959.	4.8	7
31	Profiling the T Cell Receptor Alpha/Delta Locus in Salmonids. Frontiers in Immunology, 2021, 12, 753960.	4.8	6
32	Recent Research Progress and Potential Uses of the Amphibian Xenopus as a Biomedical and Immunological Model System. Resources, 2013, 2, 167-183.	3.5	3
33	Impacts of the MHC class I-like XNC10 and innate-like T cells on tumor tolerance and rejection in the amphibian Xenopus. Carcinogenesis, 2019, 40, 924-935.	2.8	3
34	RNAi-Mediated Loss of Function of <i>Xenopus</i> Immune Genes by Transgenesis. Cold Spring Harbor Protocols, 2018, 2018, pdb.prot101519.	0.3	2
35	Evolutionary Perspective of Tumorigenesis and Antitumor Immunity: A Comparative Approach. , 2017, , 119-135.		1
36	Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin. Methods in Molecular Biology, 2018, 1865, 265-273.	0.9	1

#	ARTICLE	IF	CITATIONS
37	Three different IgD cell populations in channel catfish, Ictaulurus punctatus. FASEB Journal, 2008, 22, 863.4.	0.5	0
38	Identification CD79a and CD79b homologs in channel catfish, Ictaulurus punctatus. FASEB Journal, 2008, 22, 863.7.	0.5	0
39	An Ancestral Immune Surveillance System in theÂAmphibian Xenopus Connecting Certain Heat Shock Proteins with Classical and Nonclassical MHC Class I Molecules. , 2018, , 141-155.		0
40	Editorial: Immunity to Emerging Pathogens in Poikilothermic Vertebrates. Frontiers in Immunology, 2022, 13, 867818.	4.8	0