Rida T Farouki

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/10830749/publications.pdf
Version: 2024-02-01

1 The Bernstein polynomial basis: A centennial retrospective. Computer Aided Geometric Design, 2012, 29,
 1 379-419.

0.5

342

2 Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Geometry and Computing, 2008, , .
$0.1 \quad 168$
3 The conformal map z ât' z2 of the hodograph plane. Computer Aided Geometric Design, 1994, 11,
4 Exact Taylor series coefficients for variable-feedrate CNC curve interpolators. CAD Computer Aided
Design, 2001, 33, 155-165.
1.4

138

5 Real-time CNC interpolators for Pythagorean-hodograph curves. Computer Aided Geometric Design,
0.5

1996, 13, 583-600.
0.5

148

6 Pythagorean-hodograph space curves. Advances in Computational Mathematics, 1994, 2, 41-66.

7 Hermite Interpolation by Rotation-Invariant Spatial Pythagorean-Hodograph Curves. Advances in
7 Computational Mathematics, 2002, 17, 369-383.
0.8

112
$8 \quad$ Surface Analysis Methods. IEEE Computer Graphics and Applications, 1986, 6, 18-36.
1.0

104

9 Algorithms for timeâ€"optimal control of CNC machines along curved tool paths. Robotics and
Computer-Integrated Manufacturing, 2005, 21, 37-53.
6.1

94

10 The elastic bending energy of pythagorean-hodograph curves. Computer Aided Geometric Design, 1996,
13, 227-241.
0.5

89

11 Real rational curves are not â $€^{\sim} u n i t ~ s p e e d a ̂ \not €^{T M}$. Computer Aided Geometric Design, 1991, 8, 151-157.
0.5

82

G codes for the specification of Pythagorean-hodograph tool paths and associated feedrate functions
12 on open-architecture CNC machines. International Journal of Machine Tools and Manufacture, 1999,
6.2

39, 123-142.

13 Performance analysis of CNC interpolators for time-dependent feedrates along PH curves. Computer
$0.5 \quad 75$
Aided Geometric Design, 2001, 18, 245-265.

Construction and shape analysis of PH quintic Hermite interpolants. Computer Aided Geometric
Design, 2001, 18, 93-115.
0.5

73

Construction ofC 2 Pythagorean-hodograph interpolating splines by the homotopy method. Advances
0.8

68
in Computational Mathematics, 1996, 5, 417-442.

Legendreâ€"Bernstein basis transformations. Journal of Computational and Applied Mathematics, 2000,

19 A Hierarchy of Geometric Forms. IEEE Computer Graphics and Applications, 1985, 5, 51-78.	
20	Structural invariance of spatial Pythagorean hodographs. Computer Aided Geometric Design, 2002, 19, $395-407$.

21 The bisector of a point and a plane parametric curve. Computer Aided Geometric Design, 1994, 11, 117-151. 0.556

22 Optimal parameterizations. Computer Aided Geometric Design, 1997, 14, 153-168.
Trimmed-surface algorithms for the evaluation and interrogation of solid boundary representations. 23 IBM Journal of Research and Development, 1987, 31, 314-334. $3.2 \quad 49$1.1Efficient Solution of the Complex Quadratic Tridiagonal System for C2 PH Quintic Splines. NumericalAlgorithms, 2001, 27, 35-60.
25 Optimal tool orientation control for 5-axis CNC milling with ball-end cutters. Computer Aided
Geometric Design, 2013, 30, 226-239. 0.5 48
26 Characterization and construction of helical polynomial space curves. Journal of Computational andApplied Mathematics, 2004, 162, 365-392.
1.1 47
27 High-speed cornering by CNC machines under prescribed bounds on axis accelerations and toolpath 1.5 47
contour error. International Journal of Advanced Manufacturing Technology, 2012, 58, 327-338. 0.5 46
Rational approximation schemes for rotation-minimizing
Computer Aided Geometric Design, 2003, 20, 435-454. .
29 Geometric Hermite interpolation by spatial Pythagorean-hodograph cubics. Advances in
Computational Mathematics, 2005, 22, 325-352.
0.8 46Contour machining of free-form surfaces with real-time PH curve CNC interpolators. Computer Aided0.544
Geometric Design, 1999, 16, 61-76.
1.0 42Monte Carlo simulations of space-charge-limited ion transport through collisional plasma sheaths.Physical Review A, 1991, 44, 2664-2681.Pythagorean-hodograph quintic transition curves of monotone curvature. CAD Computer Aided1.4Design, 1997, 29, 601-606.A control polygon scheme for design of planar PH quintic spline curves. Computer Aided GeometricDesign, 2007, 24, 28-52.0.542
Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex
Time-optimal traversal of curved paths by Cartesian CNC machines under both constant and35 speed-dependent axis acceleration bounds. Robotics and Computer-Integrated Manufacturing, 2007, 23,6.139
563-579.Construction of G 1 planar Hermite interpolants with prescribed arc lengths. Computer Aided

Design of rational rotationâ€"minimizing rigid body motions by Hermite interpolation. Mathematics of
$\begin{array}{ll}43 & \text { Rational rotation-minimizing frames on polyn } \\ \text { Symbolic Computation, 2010, 45, 844-856. }\end{array}$

6.236
Performance analysis of cross-coupled controllers for CNC machines based upon precise real-time
contour error measurement. International Journal of Machine Tools and Manufacture, 2012, 52, 30-39.
45 Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves. Graphical Models, 2002,
$64,382-395$. 64, 382-395.
47 Linear perturbation methods for topologically consistent representatio
0.5
0.5 33

COMPUTING MINKOWSKI SUMS OF PLANE CURVES. International Journal of Computational Geometry

 and Applications, 1995, 05, 413-432.Boundaryâ€ condition refinement of the Childâ€"Langmuir law for collisionless dc plasma sheaths.49 Rational Pythagorean-hodograph space curves. Computer Aided Ceometric Design, 2011, 28, 75-88. 0.5 32
$50 \quad$ Construction of rounded co0.532
51 Pythagorean-Hodograph Curves. , 2002, , 405-427. 32
Topological criterion for selection of quintic Pythagorean-hodograph Hermite interpolants.
Quintic space curves with rational rotation-minimizing frames. Computer Aided Ceometric Design,0.529
55 Algorithm 812: BPOLY. ACM Transactions on Mathematical Software, 2001, 27, 267-296.

59	Helical polynomial curves and double Pythagorean hodographs I. Quaternion and Hopf map representations. Journal of Symbolic Computation, 2009, 44, 161-179.	0.5	26
60	Inverse kinematics for optimal tool orientation control in 5-axis CNC machining. Computer Aided Geometric Design, 2014, 31, 13-26.	0.5	26
61	A complete classification of quintic space curves with rational rotation-minimizing frames. Journal of Symbolic Computation, 2012, 47, 214-226.	0.5	25
62	Guaranteed consistency of surface intersections and trimmed surfaces using a coupled topology resolution and domain decomposition scheme. Advances in Computational Mathematics, 2007, 27, 1-26.	0.8	22
63	Identification and â€œreverse engineeringâ€•of Pythagorean-hodograph curves. Computer Aided Geometric Design, 2015, 34, 21-36.	0.5	22
64	Efficient high-speed cornering motions based on continuously-variable feedrates. I. Real-time interpolator algorithms. International Journal of Advanced Manufacturing Technology, 2016, 87, 3557-3568.	1.5	22

65 | Rational rotation-minimizing framesấ"Recent advances and open problems. Applied Mathematics and |
| :--- |
| Computation, 2016, 272, 80-91. |

66 Algorithms for Minkowski products and implicitlyâ€defined complex sets. Advances in Computational Mathematics, 2000, 13, 199-229.

> Self-consistent Monte Carlo simulation of the cathode fall including treatment of negative-glow

20

73 Computing with barycentric polynomials. Mathematical Intelligencer, 1991, 13, 61-69.
0.1

19

Degenerate point/curve and curve/curve bisectors arising in medial axis computations for planar domains with curved boundaries. Computer Aided Geometric Design, 1998, 15, 615-635.79 Convergent inversion approximations for polynomials in Bernstein form. Computer Aided GeometricDesign, 2000, 17, 179-196.$0.5 \quad 16$
Optimal slicing of free-form surfaces. Computer Aided Geometric Design, 2002, 19, 43-64.0.5
$81 \quad$ Spatial camera orientation control by 0.7 161.516
A real-time surface interpolator methodology for precision CNC machining of swept surfaces.International Journal of Advanced Manufacturing Technology, 2016, 83, 561-574.
83 Conic Approximation of Conic Offsets. Journal of Symbolic Computation, 1997, 23, 301-313. 0.5 15
84 Construction of rational surface patches bounded by lines of curvature. Computer Aided GeometricDesign, 2010, 27, 359-371.0.515Efficient high-speed cornering motions based on continuously-variable feedrates. II. Implementation85 and performance analysis. International Journal of Advanced Manufacturing Technology, 2017, 88,1.515
159-174.Pythagorean-hodograph curves in Euclidean spaces of dimension greater than 3. Journal of1.114Computational and Applied Mathematics, 2012, 236, 4375-4382.A comprehensive characterization of the set of polynomial curves with rational rotation-minimizing0.814
frames. Advances in Computational Mathematics, 2017, 43, 1-24.

Analysis of a kinematic model for ion transport in rf plasma sheaths. Physical Review A, 1992, 45, 5913-5928.

Topologically consistent trimmed surface approximations based on triangular patches. Computer
Aided Geometric Design, 2004, 21, 459-478.

91	Path planning with Pythagorean-hodograph curves for unmanned or autonomous vehicles. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232, 1361-1372.	0.7	12
92	Evaluating the boundary and covering degree of planar Minkowski sums and other geometrical convolutions. Journal of Computational and Applied Mathematics, 2007, 209, 246-266.	1.1	11
93	Algorithm 952. ACM Transactions on Mathematical Software, 2015, 41, 1-20.	1.6	11
94	Curves and Surfaces in Geometrical Optics. , 1992, , 239-260.		10
95	On integrating lines of curvature. Computer Aided Geometric Design, 1998, 15, 187-192.	0.5	9
96	Solution of elementary equations in the Minkowski geometric algebra of complex sets. Advances in Computational Mathematics, 2005, 22, 301-323.	0.8	9
97	A geometric product formulation for spatial Pythagorean hodograph curves with applications to Hermite interpolation. Computer Aided Geometric Design, 2007, 24, 220-237.	0.5	9
98	Non-existence of rational arc length parameterizations for curves in <mml:math xmlns:mml="http:/\|www.w3.org/1998/Math/MathML" altimg="si1.gif" display="inline" overflow="scroll">mml:msupmml:mrow <mml:mi mathvariant $=$ "double-struck">R</mml:mi></mml:mrow>mml:mrowmml:min</mml:mi></mml:mrow></mml:msup></mml:math>. Journal of Computational and Applied Mathematics, 2009, 228, 494-497. Experimental study of contouring accuracy for CNC machines executing curved paths with constant and curvature-dependent feedrates. Robotics and Computer-Integrated Manufacturing, 2013, 29,		
99			

Computational methods for rapid prototyping of analytic solid models. Rapid Prototyping Journal,
100 1996, 2, 41-48.
101 New Developments in Theory, Algorithms, and Applications for Pythagoreanấ"Hodograph Curves.
Springer INdAM Series, 2019, , 127-177.
$0.4 \quad 8$

Geometric Design Using Space Curves with Rational Rotation-Minimizing Frames. Lecture Notes in
$1.0 \quad 8$
Computer Science, 2010, , 194-208.
$\begin{array}{ll}0.3 & 7\end{array}$
Algebra in Engineering, Communications and Computing, 2007, 18, 169-189.

An interpolation scheme for designing rational rotation-minimizing camera motions. Advances in Computational Mathematics, 2013, 38, 63-82.

Experimental performance analysis of an inverse dynamics CNC compensation scheme for high-speed
105 execution of curved toolpaths. International Journal of Advanced Manufacturing Technology, 2014,
1.5

73, 195-208.
Rational frames of minimal twist along space curves under specified boundary conditions. Advances

109	Algebraically rectifiable parametric curves. Computer Aided Geometric Design, 1993, 10, 551-569.	0.5	6
110	Scalarâ€"vector algorithm for the roots of quadratic quaternion polynomials, and the characterization of quintic rational rotation-minimizing frame curves. Journal of Symbolic Computation, 2013, 58, 1-17.	0.5	6
111	Rational swept surface constructions based on differential and integral sweep curve properties. Computer Aided Geometric Design, 2015, 33, 1-16.	0.5	6
112	Solution of a quadratic quaternion equation with mixed coefficients. Journal of Symbolic Computation, 2016, 74, 140-151.	0.5	6
113	C1 and C2 interpolation of orientation data along spatial Pythagorean-hodograph curves using rational adapted spline frames. Computer Aided Geometric Design, 2018, 66, 1-15.	0.5	6
114	Minkowski Geometric Algebra and the Stability of Characteristic Polynomials. Mathematics and Visualization, 2003, , 163-188.	0.4	6
115	Computation of Minkowski Values of Polynomials over Complex Sets. Numerical Algorithms, 2004, 36, 13-29.	1.1	5

Construction of rational curves with rational arc lengths by direct integration. Computer Aided
Geometric Design, 2019, 74, 101773.

Mapping rational rotation-minimizing frames from polynomial curves on to rational curves. Computer Aided Geometric Design, 2020, 78, 101833.

Real-time compensation of backlash positional errors in CNC machines by localized feedrate modulation. International Journal of Advanced Manufacturing Technology, 2022, 119, 5763.

130 The Cartesian Ovals. Mathematical Intelligencer, 2022, 44, 343-353.
$0.1 \quad 3$

131 Computational issues in solid boundary evaluation. Information Sciences, 1988, 44, 87-171.
4.0

Geometry of the ringed surfaces in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"
altimg="sil.gif" overflow="scroll"> mml:msupmml:mrow <mml:mi
mathvariant="double-struck">R</mml:mi></mml:mrow>mml:mrowmml:mn4</mml:mn></mml:mrow></mml:msup></mml:math> that generate spatial Pythagorean hodographs. Journal of Symbolic Computation, 2016, 73, 87-103.

> Reduced difference polynomials and self-intersection computations. Applied Mathematics and

Computation, 2018, 324, 174-190.

Feedrate modulation for accurate traversal of trimmed planar offset paths. International Journal of Advanced Manufacturing Technology, 2018, 97, 3325-3337.

Construction of periodic adapted orthonormal frames on closed space curves. Computer Aided
Geometric Design, 2020, 76, 101802.

Identifying Pythagorean-Hodograph Curves Closest to Prescribed Planar BÃ@zier Curves. CAD Computer Aided Design, 2022, 149, 103266.

Foreword to the Special Focus on Mathematics and Algorithms for CAM and CNC. Mathematics in
Computer Science, 2012, 6, 267-268.

Minkowski products of unit quaternion sets. Advances in Computational Mathematics, 2019, 45, 1607-1629.

Spatial <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="dle728"
 closed loops of prescribed arc length defined by Pythagorean-hodograph curves. Applied Mathematics and Computation, 2021, 391, 125653.

Accurate Real-time CNC Curve Interpolators Based Upon Richardson Extrapolation. CAD Computer Aided Design, 2021, 135, 103005.

Computing the Minkowski Value of the Exponential Function over a Complex Disk. Lecture Notes in
Computer Science, 2007, , 1-21.

Planar projections of spatial Pythagorean-hodograph curves. Computer Aided Geometric Design, 2021, 91, 102049.

Suppression of chip load variations by real-time spindle speed modulation. International Journal of Advanced Manufacturing Technology, 2018, 99, 2005-2014.
1.5

