
Nicolas Lebonvallet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1083044/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A reâ€innervated <i>in vitro</i> skin model of nonâ€histaminergic itch and skin neurogenic inflammation: PAR2â€, TRPV1―and TRPA1â€agonist induced functionality. Skin Health and Disease, 2021, 1, e66.	0.7	6
2	Intraâ€epidermal nerve endings progress within keratinocyte cytoplasmic tunnels in normal human skin. Experimental Dermatology, 2020, 29, 387-392.	1.4	21
3	Keratinocytes Communicate with Sensory Neurons via Synapticâ€like Contacts. Annals of Neurology, 2020, 88, 1205-1219.	2.8	55
4	Lifting the veil on the keratinocyte contribution to cutaneous nociception. Protein and Cell, 2020, 11, 239-250.	4.8	42
5	In Vitro Differentiation of Human Skin-Derived Cells into Functional Sensory Neurons-Like. Cells, 2020, 9, 1000.	1.8	13
6	Cutaneous nociception: Role of keratinocytes. Experimental Dermatology, 2019, 28, 1466-1469.	1.4	35
7	A new tool to test active ingredient using lactic acid in vitro, a help to understand cellular mechanism involved in stinging test: An example using a bacterial polysaccharide (Fucogel [®]). Experimental Dermatology, 2018, 27, 238-244.	1.4	11
8	Major Role for TRPV1 and InsP3R inÂPAR2-Elicited Inflammatory MediatorÂProduction in Differentiated Human Keratinocytes. Journal of Investigative Dermatology, 2018, 138, 1564-1572.	0.3	27
9	What about physical contacts between epidermal keratinocytes and sensory neurons?. Experimental Dermatology, 2018, 27, 9-13.	1.4	29
10	Intraepidermal nerve fibres are not the exclusive tranducers of nociception. Journal of Neuroscience Methods, 2018, 306, 92-93.	1.3	11
11	New insights into the roles of myofibroblasts and innervation during skin healing and innovative therapies to improve scar innervation. Experimental Dermatology, 2018, 27, 950-958.	1.4	37
12	In vitro models to study cutaneous innervation mechanisms. , 2018, , 303-326.		1
13	TRPV1 and TRPA1 in cutaneous neurogenic and chronic inflammation: pro-inflammatory response induced by their activation and their sensitization. Protein and Cell, 2017, 8, 644-661.	4.8	263
14	Release of neuropeptides from a neuro-cutaneous co-culture model: A novel inÂvitro model for studying sensory effects of ciguatoxins. Toxicon, 2016, 116, 4-10.	0.8	17
15	In Vitro Models of Itch. , 2016, , 49-55.		1
16	Selfâ€maintenance of neurogenic inflammation contributes to a vicious cycle in skin. Experimental Dermatology, 2015, 24, 723-726.	1.4	35
17	Activation of primary sensory neurons by the topical application of capsaicin on the epidermis of a reâ€innervated organotypic human skin model. Experimental Dermatology, 2014, 23, 73-75.	1.4	17
18	Influence of sensory neuropeptides on human cutaneous wound healing process. Journal of Dermatological Science, 2014, 74, 193-203.	1.0	66

NICOLAS LEBONVALLET

#	Article	IF	CITATIONS
19	Role of neuropeptides, neurotrophins, and neurohormones in skin wound healing. Wound Repair and Regeneration, 2013, 21, 772-788.	1.5	50
20	Effect of human skin explants on the neurite growth of the <scp>PC</scp> 12 cell line. Experimental Dermatology, 2013, 22, 224-225.	1.4	13
21	Twoâ€photon microscopy of dermal innervation in a human reâ€innervated model of skin. Experimental Dermatology, 2013, 22, 290-291.	1.4	9
22	Effects of the reâ€innervation of organotypic skin explants on the epidermis. Experimental Dermatology, 2012, 21, 156-158.	1.4	49
23	Characterization of neurons from adult human skinâ€derived precursors in serumâ€free medium : a PCR array and immunocytological analysis. Experimental Dermatology, 2012, 21, 195-200.	1.4	16
24	Effects of sangre de drago in an <i>in vitro</i> model of cutaneous neurogenic inflammation. Experimental Dermatology, 2010, 19, 796-799.	1.4	14
25	Mechanisms of the sensory effects of tacrolimus on the skin. British Journal of Dermatology, 2010, 163, 70-77.	1.4	103
26	The evolution and use of skin explants: potential and limitations for dermatological research. European Journal of Dermatology, 2010, 20, 671-84.	0.3	66
27	The whole epidermis as the forefront of the sensory system. Experimental Dermatology, 2007, 16, 634-635.	1.4	17