
David A Brown

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10830148/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effects of OP2113 on Myocardial Infarct Size and No Reflow in a Rat Myocardial Ischemia/Reperfusion Model. Cardiovascular Drugs and Therapy, 2022, 36, 217-227.	2.6	6
2	Comment on "A severe linezolidâ€induced rhabdomyolysis and lactic acidosis in Leigh syndromeâ€i Journal of Inherited Metabolic Disease, 2021, 44, 6-7.	3.6	2
3	Complex I protein NDUFS2 is vital for growth, ROS generation, membrane integrity, apoptosis, and mitochondrial energetics. Mitochondrion, 2021, 58, 160-168.	3.4	14
4	Voluntary wheel running complements microdystrophin gene therapy to improve muscle function in mdx mice. Molecular Therapy - Methods and Clinical Development, 2021, 21, 144-160.	4.1	11
5	Bioenergetics underlying single-cell migration on aligned nanofiber scaffolds. American Journal of Physiology - Cell Physiology, 2020, 318, C476-C485.	4.6	21
6	The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Communications Biology, 2020, 3, 389.	4.4	43
7	Elevated perfusate [Na+] increases contractile dysfunction during ischemia and reperfusion. Scientific Reports, 2020, 10, 17289.	3.3	10
8	Safety of drug use in patients with a primary mitochondrial disease: An international Delphiâ€based consensus. Journal of Inherited Metabolic Disease, 2020, 43, 800-818.	3.6	42
9	Progression-Mediated Changes in Mitochondrial Morphology Promotes Adaptation to Hypoxic Peritoneal Conditions in Serous Ovarian Cancer. Frontiers in Oncology, 2020, 10, 600113.	2.8	27
10	Cardioprotective effects of idebenone do not involve ROS scavenging: Evidence for mitochondrial complex I bypass in ischemia/reperfusion injury. Journal of Molecular and Cellular Cardiology, 2019, 135, 160-171.	1.9	13
11	The role of cardiolipin concentration and acyl chain composition on mitochondrial inner membrane molecular organization and function. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2019, 1864, 1039-1052.	2.4	55
12	Pulmonary Exposure to Magnéli Phase Titanium Suboxides Results in Significant Macrophage Abnormalities and Decreased Lung Function. Frontiers in Immunology, 2019, 10, 2714.	4.8	12
13	Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. Journal of Biological Chemistry, 2018, 293, 466-483.	3.4	44
14	Common gut microbial metabolites of dietary flavonoids exert potent protective activities in β-cells and skeletal muscle cells. Journal of Nutritional Biochemistry, 2018, 62, 95-107.	4.2	45
15	Proteolipid domains form in biomimetic and cardiac mitochondrial vesicles and are regulated by cardiolipin concentration but not monolyso-cardiolipin. Journal of Biological Chemistry, 2018, 293, 15933-15946.	3.4	12
16	Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Advances in Nutrition, 2018, 9, 247-262.	6.4	59
17	Influence of Pulsed Electric Fields and Mitochondria-Cytoskeleton Interactions on Cell Respiration. Biophysical Journal, 2018, 114, 2951-2964.	0.5	19
18	Ultrafine Particulate Matter Increases Cardiac Ischemia/Reperfusion Injury via Mitochondrial Permeability Transition Pore. Cardiovascular Toxicology, 2017, 17, 441-450.	2.7	26

DAVID A BROWN

#	Article	IF	CITATIONS
19	Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity. Journal of Nutritional Biochemistry, 2017, 45, 94-103.	4.2	31
20	Distinct membrane properties are differentially influenced by cardiolipin content and acyl chain composition in biomimetic membranes. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 257-267.	2.6	25
21	Mitochondrial function as a therapeutic target in heart failure. Nature Reviews Cardiology, 2017, 14, 238-250.	13.7	525
22	Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Scientific Reports, 2017, 7, 13663.	3.3	38
23	New and revisited approaches to preserving the reperfused myocardium. Nature Reviews Cardiology, 2017, 14, 679-693.	13.7	56
24	Enhanced Electrical Field Stimulated Nitrergic and Purinergic Vasoreactivity in Distal vs Proximal Internal Pudendal Arteries. Journal of Sexual Medicine, 2017, 14, 1285-1296.	0.6	6
25	Exercise-induced protection against reperfusion arrhythmia involves stabilization of mitochondrial energetics. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 310, H1360-H1370.	3.2	34
26	Cardioprotective Effects of Mitochondria-Targeted Peptide SBT-20 in two Different Models of Rat Ischemia/Reperfusion. Cardiovascular Drugs and Therapy, 2016, 30, 559-566.	2.6	19
27	Mitochondrial therapy improves limb perfusion and myopathy following hindlimb ischemia. Journal of Molecular and Cellular Cardiology, 2016, 97, 191-196.	1.9	26
28	Why Does Exercise "Trigger" Adaptive Protective Responses in the Heart?. Dose-Response, 2015, 1, 1-19.	1.6	15
29	Mitochondrial Regulation of the Muscle Microenvironment in Critical Limb Ischemia. Frontiers in Physiology, 2015, 6, 336.	2.8	26
30	N-3 Polyunsaturated Fatty Acids,ÂLipid Microclusters, andÂVitaminÂE. Current Topics in Membranes, 2015, 75, 209-231.	0.9	22
31	Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. Life Sciences, 2015, 141, 170-178.	4.3	50
32	The ââ,¬Å"Goldilocks Zoneââ,¬Â•from a redox perspectiveââ,¬â€Adaptive vs. deleterious responses to oxidati stress in striated muscle. Frontiers in Physiology, 2014, 5, 358.	ive 2.8	68
33	Pulmonary instillation of multi-walled carbon nanotubes promotes coronary vasoconstriction and exacerbates injury in isolated hearts. Nanotoxicology, 2014, 8, 38-49.	3.0	33
34	Reduction of Early Reperfusion Injury With the Mitochondria-Targeting Peptide Bendavia. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 121-132.	2.0	88
35	"Roid-Rage―at the Cellular Level: Abolition of Endogenous Cardioprotection by Anabolic Steroids Reveals New Links Between the RAAS and Cardiac KATP Channels. Cardiovascular Drugs and Therapy, 2014, 28, 113-114.	2.6	0
36	Increasing levels of cardiolipin differentially influence packing of phospholipids found in the mitochondrial inner membrane. Biochemical and Biophysical Research Communications, 2014, 450, 366-371.	2.1	30

DAVID A BROWN

#	Article	IF	CITATIONS
37	Are Post-Operative Arrhythmias in Patients With Metabolic Syndrome a Sign of Dysfunctional Mitochondria?. Journal of the American College of Cardiology, 2013, 62, 1474-1475.	2.8	3
38	Rationale and design of the EMBRACE STEMI Study: A phase 2a, randomized, double-blind, placebo-controlled trial to evaluate the safety, tolerability and efficacy of intravenous Bendavia on reperfusion injury in patients treated with standard therapy including primary percutaneous coronary intervention and stenting for ST-segment elevation myocardial infarction. American Heart Journal, 2013, 165, 509-514.e7.	2.7	72
39	Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. , 2013, 140, 258-266.		43
40	Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. Cardiovascular Research, 2013, 98, 47-55.	3.8	67
41	The mitochondriaâ€ŧargeting peptide Bendavia protects the heart against ischemiaâ€reperfusion injury without abolishing ischemic preconditioning. FASEB Journal, 2013, 27, 1191.4.	0.5	0
42	Stage of the estrous cycle does not influence myocardial ischemia-reperfusion injury in rats (Rattus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf : 12
43	Reduction of Ischemia/Reperfusion Injury With Bendavia, a Mitochondriaâ€Targeting Cytoprotective Peptide. Journal of the American Heart Association, 2012, 1, e001644.	3.7	130
44	Mitochondrial permeability transition in the diabetic heart: Contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. Journal of Molecular and Cellular Cardiology, 2012, 52, 1009-1018.	1.9	92
45	Exerciseâ€induced cardioprotection is dependent on enhanced glutathione reductase activity. FASEB Journal, 2012, 26, 1142.34.	0.5	0
46	Estrous cycle phase does not influence myocardial infarction but may alter arrhythmogenicity in isolated rat hearts. FASEB Journal, 2012, 26, 1136.17.	0.5	0
47	Short-term exercise preserves myocardial glutathione and decreases arrhythmias after thiol oxidation and ischemia in isolated rat hearts. Journal of Applied Physiology, 2011, 111, 1751-1759.	2.5	33
48	Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. Journal of Applied Physiology, 2011, 111, 905-915.	2.5	96
49	Inhibiting mitochondrial uncoupling protein 2 exacerbates myocardial ischemia/reperfusion injury. FASEB Journal, 2011, 25, 1033.21.	0.5	0
50	High doses of ketamine-xylazine anesthesia reduce cardiac ischemia-reperfusion injury in guinea pigs. Journal of the American Association for Laboratory Animal Science, 2011, 50, 349-54.	1.2	19
51	Cardiac mitochondria and arrhythmias. Cardiovascular Research, 2010, 88, 241-249.	3.8	183
52	Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. Journal of Molecular and Cellular Cardiology, 2010, 48, 673-679.	1.9	96
53	Role of mitochondrial dysfunction in cardiac glycoside toxicity. Journal of Molecular and Cellular Cardiology, 2010, 49, 728-736.	1.9	77
54	'Leaky' ryanodine receptors and sudden cardiac death. Cardiovascular Research, 2009, 84, 343-344.	3.8	2

DAVID A BROWN

#	Article	IF	CITATIONS
55	Alterations in peroxisome proliferator-activated receptor mRNA expression in skeletal muscle after acute and repeated bouts of exercise. Molecular and Cellular Biochemistry, 2009, 332, 225-231.	3.1	32
56	Effects of 4'-chlorodiazepam on cellular excitation-contraction coupling and ischaemia-reperfusion injury in rabbit heart. Cardiovascular Research, 2008, 79, 141-149.	3.8	79
57	A ligand to the mitochondrial benzodiazepine receptor prevents ventricular arrhythmias and LV dysfunction after ischemia or glutathione depletion. FASEB Journal, 2008, 22, 747.7.	0.5	4
58	Restoration of CREB function is linked to completion and stabilization of adaptive cardiac hypertrophy in response to exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 293, H246-H259.	3.2	75
59	Short-term treadmill running in the rat: what kind of stressor is it?. Journal of Applied Physiology, 2007, 103, 1979-1985.	2.5	103
60	Perspectives in innate and acquired cardioprotection: cardioprotection acquired through exercise. Journal of Applied Physiology, 2007, 103, 1894-1899.	2.5	42
61	Exercise increases SOCS-3 expression in rat skeletal muscle: potential relationship to IL-6 expression. Journal of Physiology, 2006, 572, 839-848.	2.9	55
62	Sex differences in myocardial infarct size are abolished by sarcolemmal KATP channel blockade in rat. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2644-H2647.	3.2	75
63	Susceptibility of the heart to ischaemia-reperfusion injury and exercise-induced cardioprotection are sex-dependent in the rat. Journal of Physiology, 2005, 564, 619-630.	2.9	123
64	Cardioprotection afforded by chronic exercise is mediated by the sarcolemmal, and not the mitochondrial, isoform of the KATPchannel in the rat. Journal of Physiology, 2005, 569, 913-924.	2.9	104
65	Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. Journal of Applied Physiology, 2003, 95, 2510-2518.	2.5	134