
Ck Jayasankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10829299/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Optical spectroscopy of Eu3+ ions in lithium borate and lithium fluoroborate glasses. Physica B: Condensed Matter, 2000, 279, 262-281.	2.7	207
2	Optical properties of Sm3+ ions in zinc and alkali zinc borosulphate glasses. Optical Materials, 1997, 8, 193-205.	3.6	183
3	Optical spectroscopy of Sm3+ ions in phosphate and fluorophosphate glasses. Optical Materials, 2007, 29, 1429-1439.	3.6	179
4	Optical absorption and photoluminescence studies of Eu3+-doped phosphate and fluorophosphate glasses. Journal of Luminescence, 2007, 126, 109-120.	3.1	174
5	Fluorescence spectroscopy of Sm3+ ions in P2O5–PbO–Nb2O5 glasses. Physica B: Condensed Matter, 2008, 403, 3527-3534.	2.7	170
6	Optical properties of Sm3+ ions in lithium borate and lithium fluoroborate glasses. Journal of Alloys and Compounds, 2000, 307, 82-95.	5.5	168
7	Spectroscopic properties of Dy3+ ions in lithium borate and lithium fluoroborate glasses. Optical Materials, 2000, 15, 65-79.	3.6	164
8	White light emission in Dy3+-doped lead fluorophosphate glasses. Materials Chemistry and Physics, 2011, 130, 1078-1085.	4.0	160
9	Optical properties and generation of white light in Dy3+-doped lead phosphate glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2013, 118, 40-48.	2.3	149
10	Dy3+-doped zinc fluorophosphate glasses for white luminescence applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2013, 113, 145-153.	3.9	141
11	Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses. Journal of Luminescence, 2009, 129, 444-448.	3.1	139
12	Photoluminescence and energy transfer studies of Dy3+-doped fluorophosphate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2008, 70, 577-586.	3.9	135
13	Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Physica B: Condensed Matter, 1997, 240, 273-288.	2.7	133
14	Analysis of spectral data and comparative energy level parametrizations for Ln3+ in cubic elpasolite crystals. Journal of Alloys and Compounds, 1994, 215, 349-370.	5.5	129
15	Optical properties of Dy3+-doped phosphate and fluorophosphate glasses. Optical Materials, 2009, 31, 624-631.	3.6	122
16	Spectroscopic properties of Sm3+ ions in lead fluorophosphate glasses. Journal of Luminescence, 2012, 132, 2802-2809.	3.1	115
17	Phenomenological spin-correlated crystal-field analyses of energy levels in Ln3+:LaCl3 systems. Journal of the Less Common Metals, 1989, 148, 289-296.	0.8	108
18	Thermal, vibrational and optical properties of Eu3+-doped lead fluorophosphate glasses for red laser applications. Materials Chemistry and Physics, 2013, 141, 903-911.	4.0	107

#	Article	IF	CITATIONS
19	Optical characterization of Er3+-doped zinc fluorophosphate glasses for optical temperature sensors. Sensors and Actuators B: Chemical, 2013, 186, 156-164.	7.8	107
20	Luminescence properties of Dy3+ ions in a variety of borate and fluoroborate glasses containing lithium, zinc, and lead. Journal of Alloys and Compounds, 2004, 374, 22-26.	5.5	103
21	Characterization of Eu3+-doped fluorophosphate glasses for red emission. Journal of Non-Crystalline Solids, 2007, 353, 1397-1401.	3.1	99
22	Optical properties of Eu3+ ions in phosphate glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2012, 97, 788-797.	3.9	97
23	Spectroscopic investigations of 1.06î¼m emission in Nd3+-doped alkali niobium zinc tellurite glasses. Journal of Luminescence, 2010, 130, 1021-1025.	3.1	96
24	Spectral characteristics of Pr3+-doped lead based phosphate glasses for optical display device applications. Journal of Luminescence, 2020, 228, 117585.	3.1	94
25	Optical properties of zincfluorophosphate glasses doped with Dy3+ ions. Physica B: Condensed Matter, 2013, 408, 158-163.	2.7	93
26	Spectroscopic and pump power dependent upconversion studies of Er 3+ -doped lead phosphate glasses for photonic applications. Journal of Alloys and Compounds, 2017, 699, 959-968.	5.5	90
27	Luminescence and phonon side band analysis of Eu3+-doped lead fluorosilicate glasses. Optical Materials, 2016, 62, 139-145.	3.6	87
28	Fluorescence properties of Eu3+ ions doped borate and fluoroborate glasses containing lithium, zinc and lead. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2006, 63, 276-281.	3.9	86
29	Synthesis and characterization of thiophenol passivated Fe-doped ZnS nanoparticles. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 150, 125-129.	3.5	86
30	Structural and spectroscopic investigations on Eu3+-doped alkali fluoroborate glasses. Solid State Sciences, 2009, 11, 1297-1302.	3.2	85
31	Fluorescence properties of Nd3+-doped tellurite glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2007, 67, 702-708.	3.9	84
32	Spectral studies of Dy3+:zincphosphate glasses for white light source emission applications: A comparative study. Journal of Non-Crystalline Solids, 2022, 583, 121466.	3.1	84
33	Optical and luminescence properties of Dy3+ ions in phosphate based glasses. Solid State Sciences, 2013, 22, 82-90.	3.2	83
34	Structural and spectroscopic properties of Eu3+-doped zinc fluorophosphate glasses. Journal of Molecular Structure, 2013, 1036, 42-50.	3.6	83
35	Spectroscopic and photoluminescence properties of Sm3+ ions in Pb–K–Al–Na phosphate glasses for efficient visible lasers. Journal of Luminescence, 2014, 153, 233-241.	3.1	83
36	Luminescence and laser transition studies of Dy3+:K–Mg–Al fluorophosphate glasses. Physica B: Condensed Matter, 2009, 404, 235-242.	2.7	82

#	Article	IF	CITATIONS
37	Relevance of radiative transfer processes on Nd3+ doped phosphate glasses for temperature sensing by means of the fluorescence intensity ratio technique. Sensors and Actuators B: Chemical, 2014, 195, 324-331.	7.8	80
38	Optical properties of Er3+ ions in lithium borate glasses and comparative energy level analyses of Er3+ ions in various glasses. Journal of Non-Crystalline Solids, 1996, 197, 111-128.	3.1	77
39	Structural and luminescence properties of Sm3+ ions in zinc fluorophosphate glasses. Optical Materials, 2013, 35, 1557-1563.	3.6	76
40	Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system. Journal of Alloys and Compounds, 2008, 458, 66-76.	5.5	75
41	Fluorescence properties and white light generation from Dy 3+ -doped niobium phosphate glasses. Optical Materials, 2017, 69, 87-95.	3.6	74
42	Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application. Materials Research Bulletin, 2014, 51, 336-344.	5.2	71
43	Concentration dependent luminescence properties of Sm3+-ions in tellurite–tungsten–zirconium glasses. Optical Materials, 2015, 40, 26-35.	3.6	71
44	Spectroscopy of Pr3+ ions in lithium borate and lithium fluoroborate glasses. Physica B: Condensed Matter, 2001, 301, 326-340.	2.7	69
45	Er3+–Yb3+ codoped phosphate glasses used for an efficient 1.5μ4m broadband gain medium. Optical Materials, 2012, 34, 1235-1240.	3.6	69
46	Spectroscopic and radiative properties of Sm3+-doped K–Mg–Al phosphate glasses. Optics Communications, 2013, 286, 204-210.	2.1	69
47	Spectroscopic and 1.06μm laser properties of Nd3+-doped K–Sr–Al phosphate and fluorophosphate glasses. Journal of Alloys and Compounds, 2008, 458, 509-516.	5.5	67
48	Spectroscopic Investigation of Sm3+ doped phosphate based glasses for reddish-orange emission. Optics Communications, 2013, 311, 156-162.	2.1	67
49	Optical properties of Nd3+ ions in lithium borate glasses. Materials Chemistry and Physics, 1995, 42, 106-119.	4.0	65
50	Optical properties of Ho3+ ions in lead phosphate glasses. Optical Materials, 2012, 35, 102-107.	3.6	65
51	Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses. Optical Materials, 1995, 4, 529-546.	3.6	62
52	Spectroscopic properties of Sm3+ ions in phosphate and fluorophosphate glasses. Journal of Non-Crystalline Solids, 2013, 365, 85-92.	3.1	62
53	Dy3+-doped tellurite based tungsten-zirconium glasses: Spectroscopic study. Journal of Molecular Structure, 2015, 1084, 182-189.	3.6	62
54	Structural, optical absorption and luminescence properties of Nd3+ ions in NaO-NaF borate glasses. Optical Materials, 2010, 32, 1035-1041.	3.6	61

#	Article	IF	CITATIONS
55	Optical properties and energy transfer of Dy3+-doped transparent oxyfluoride glasses and glass–ceramics. Journal of Non-Crystalline Solids, 2010, 356, 236-243.	3.1	60
56	Effect of P2O5 addition on structural and luminescence properties of Nd3+-doped tellurite glasses. Journal of Alloys and Compounds, 2016, 684, 322-327.	5.5	59
57	Fluorescence line narrowing spectral studies of Eu3+-doped lead borate glass. Journal of Non-Crystalline Solids, 2005, 351, 929-935.	3.1	58
58	Energy transfer and photoluminescence properties of Dy3+/Tb3+ co-doped oxyfluorosilicate glass–ceramics for solid-state white lighting. Ceramics International, 2014, 40, 11115-11121.	4.8	58
59	1.53 µm luminescence properties of Er3+-doped K–Sr–Al phosphate glasses. Ceramics International, 2015, 41, 5765-5771.	4.8	57
60	Spectroscopic and fluorescence properties of Sm3+-doped zincfluorophosphate glasses. Journal of Rare Earths, 2014, 32, 918-926.	4.8	56
61	Thermal and optical properties of Nd3+ ions in K–Ca–Al fluorophosphate glasses. Journal of Luminescence, 2015, 166, 328-334.	3.1	55
62	Sol–gel synthesis and thermal stability of luminescence of Lu3Al5O12:Ce3+ nano-garnet. Journal of Alloys and Compounds, 2011, 509, 859-863.	5.5	53
63	Spectral investigations of Sm 3+ -doped niobium phosphate glasses. Optical Materials, 2017, 66, 35-42.	3.6	52
64	Composition and concentration dependence of spectroscopic properties of Nd3+-doped tellurite and metaborate glasses. Optical Materials, 2011, 33, 928-936.	3.6	49
65	Er3+-doped tellurite glasses for enhancing a solar cell photocurrent through photon upconversion upon 1500Ânm excitation. Materials Chemistry and Physics, 2017, 199, 67-72.	4.0	49
66	Spectral investigations of Nd3+:Ba(PO3)2+La2O3 glasses for infrared laser gain media applications. Optical Materials, 2022, 129, 112482.	3.6	49
67	Optical absorption and emission properties of Nd 3+ -doped oxyfluorosilicate glasses for solid state lasers. Infrared Physics and Technology, 2014, 67, 555-559.	2.9	48
68	Luminescence properties of Sm3+-doped fluorosilicate glasses. Optics Communications, 2015, 344, 100-105.	2.1	48
69	High-pressure fluorescence study of Sm3+: lithium fluoroborate glass. Journal of Luminescence, 2000, 91, 33-39.	3.1	47
70	Optical and fluorescence spectroscopy of Eu2O3-doped P2O5–K2O–KF–MO–Al2O3 (M = Mg, Sr and Ba) glasses. Optics Communications, 2011, 284, 2909-2914.	2.1	47
71	Gain properties and concentration quenching of Er3+-doped niobium oxyfluorosilicate glasses for photonic applications. Optical Materials, 2014, 36, 823-828.	3.6	46
72	Synthesis and luminescence properties of Er3+-doped Lu3Ga5O12 nanocrystals. Journal of Luminescence, 2008, 128, 811-813.	3.1	45

#	Article	IF	CITATIONS
73	Luminescence studies on Er3+ -doped zincfluorophosphate glasses for 1.53Âμm laser applications. Journal of Molecular Structure, 2017, 1130, 1001-1008.	3.6	45
74	Optical properties of Yb3+-doped phosphate laser glasses. Journal of Alloys and Compounds, 2011, 509, 5084-5089.	5.5	44
75	Spectral investigations of Sm3+-doped oxyfluorosilicate glasses. Materials Research Bulletin, 2013, 48, 3607-3613.	5.2	43
76	Spectroscopic investigations on high efficiency deep red-emitting Ca2SiO4:Eu3+ phosphors synthesized from agricultural waste. Ceramics International, 2018, 44, 14063-14069.	4.8	42
77	Spectroscopic characterization of alkali modified zinc-tellurite glasses doped with neodymium. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2010, 77, 135-140.	3.9	40
78	Near-infrared and upconversion luminescence of Tm3+ and Tm3+/Yb3+-doped oxyfluorosilicate glasses. Journal of Non-Crystalline Solids, 2019, 507, 1-10.	3.1	40
79	Spectroscopic, thermal and structural investigations of Dy3+ activated zinc borotellurite glasses and nano-glass-ceramics for white light generation. Journal of Non-Crystalline Solids, 2019, 521, 119472.	3.1	39
80	Phonon sideband spectrum and vibrational analysis of Eu3+-doped niobium oxyfluorosilicate glass. Journal of Luminescence, 2013, 143, 674-679.	3.1	38
81	Structural and NIR to visible upconversion properties of Er3+-doped LaPO4 phosphors. Journal of Luminescence, 2016, 171, 51-57.	3.1	37
82	Spectroscopy and radiation trapping of Yb3+ ions in lead phosphate glasses. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 140, 37-47.	2.3	36
83	Structure, morphology and optical characterization of Dy 3+ -doped BaYF 5 nanocrystals for warm white light emitting devices. Optical Materials, 2017, 70, 16-24.	3.6	36
84	Synthesis of Ca2SiO4:Dy3+ phosphors from agricultural waste for solid state lighting applications. Ceramics International, 2017, 43, 16622-16627.	4.8	36
85	Studies of radiative and mechanical properties of Nd 3+ -doped lead fluorosilicate glasses for broadband amplification in a chirped pulse amplification based high power laser system. Journal of Luminescence, 2017, 188, 558-566.	3.1	35
86	1.55μm emission and upconversion properties of Er3+-doped oxyflurotellurite glasses. Chemical Physics Letters, 2007, 445, 162-166.	2.6	34
87	Synthesis, structural and luminescence properties of near white light emitting Dy3+-doped Y2CaZnO5 nanophosphor for solid state lighting. Ceramics International, 2013, 39, 7523-7529.	4.8	34
88	Chemical pressure effects on the spectroscopic properties of Nd^3+-doped gallium nano-garnets. Optical Materials Express, 2015, 5, 1661.	3.0	34
89	Photoluminescence, \hat{I}^3 -irradiation and X-ray induced luminescence studies of Sm3+-doped oxyfluorosilicate glasses and glass-ceramics. Ceramics International, 2018, 44, 6104-6114.	4.8	34
90	Enhanced visible emissions of Pr3+-doped oxyfluoride transparent glass-ceramics containing SrF2 nanocrystals. Ceramics International, 2018, 44, 1737-1743.	4.8	34

#	Article	IF	CITATIONS
91	Crystal free-ion energy level analysis of Er3+ (4f11) in various crystal hosts-oxygen coordinated systems. Physica B: Condensed Matter, 1994, 193, 166-176.	2.7	33
92	Optical and ESR studies on Fe doped ZnS nanocrystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1465-1468.	2.1	33
93	Enhanced light harvesting with novel photon upconverted Y2CaZnO5:Er3+/Yb3+ nanophosphors for dye sensitized solar cells. Solar Energy, 2017, 157, 956-965.	6.1	33
94	Optical properties of Dy3+ -doped P2O5 - K2Oâ^'MgO/MgF2â^'Al2O3 glasses. Physics Procedia, 2011, 13, 70-73.	1.2	32
95	Optical properties of Er^3+-doped K-Ca-Al fluorophosphate glasses for optical amplification at 153 μm. Optical Materials Express, 2015, 5, 1689.	3.0	32
96	Optical properties of Tm3+ ions in lithium borate glasses. Optical Materials, 1996, 6, 185-201.	3.6	29
97	Optical spectroscopy of thulium-doped oxyfluoroborate glass. Journal of Alloys and Compounds, 2004, 385, 12-18.	5.5	29
98	Spectroscopic investigations of Nd3+ ions in niobium phosphate glasses for laser applications. Journal of Luminescence, 2019, 211, 233-242.	3.1	29
99	Luminescence properties of Eu3+ ions in phosphate-based bioactive glasses. Solid State Sciences, 2011, 13, 1309-1314.	3.2	28
100	Preparation and luminescence characterization of Zn(1â^'x)MoO4: xDy3+ phosphor for white light-emitting diodes. Optics Communications, 2014, 312, 233-237.	2.1	28
101	Visible luminescence of Sm3+:K–Ca–Li fluorophosphate glasses. Journal of Molecular Structure, 2014, 1074, 496-502.	3.6	28
102	Luminescence properties of europium doped oxyfluorosilicate glasses for visible light devices. Optical Materials, 2018, 83, 348-355.	3.6	28
103	Tb3+-doped WO3 thin films: A potential candidate in white light emitting devices. Journal of Alloys and Compounds, 2019, 788, 429-445.	5.5	28
104	Parametric analysis of f-f transition intensities in trigonal Na3[Nd(oxydiacetate)3]·2NaClO4·6H2O. Chemical Physics, 1989, 138, 139-156.	1.9	27
105	Spectroscopy and near infrared upconversion of Er 3+ -doped TZNT glasses. Journal of Luminescence, 2016, 169, 270-276.	3.1	27
106	Spectroscopic studies on Yb 3+ -doped tungsten-tellurite glasses for laser applications. Journal of Non-Crystalline Solids, 2018, 479, 9-15.	3.1	27
107	Spectroscopic investigations on multi-channel visible and NIR emission of Sm3+-doped alkali-alkaline earth fluoro phosphate glasses. Optical Materials, 2019, 91, 7-16.	3.6	27
108	Novel reddish-orange color emitting Ca2SiO4:Sm3+ phosphors for white LED applications prepared by using agricultural waste. Journal of Luminescence, 2020, 221, 116996.	3.1	27

#	Article	IF	CITATIONS
109	Spectroscopic properties of Eu3+/Nd3+ co-doped phosphate glasses and opaque glass–ceramics. Optical Materials, 2015, 46, 34-39.	3.6	26
110	Spectroscopic investigations of 1.06 µm emission and time resolved Z-scan studies in Nd3+-doped zinc tellurite based glasses. Journal of Luminescence, 2017, 192, 1047-1055.	3.1	26
111	Analysis and comparison of holmium 4f10energy levels in Cs2NaHoCl6and Cs2NaHoBr6. Molecular Physics, 1987, 61, 635-644.	1.7	25
112	Local field dependent fluorescence properties of Eu3+ ions in a fluorometaphosphate laser glass. Journal of Non-Crystalline Solids, 2011, 357, 2139-2147.	3.1	25
113	Luminescence and energy transfer studies of Ce3+/Dy3+ doped fluorophosphate glasses. Journal of Luminescence, 2019, 208, 89-98.	3.1	25
114	Comparative crystal free-ion energy level analysis of Nd3+ (4f3) ions in various oxygen co-ordinated systems. Physica B: Condensed Matter, 1995, 212, 167-174.	2.7	24
115	Luminescence characteristics of Nd3+-doped K–Ba–Al-fluorophosphate laser glasses. Journal of Alloys and Compounds, 2008, 451, 697-701.	5.5	24
116	Sensitizing effect of Yb3+ ions on photoluminescence properties of Er3+ ions in lead phosphate glasses: Optical fiber amplifiers. Optical Materials, 2018, 86, 256-269.	3.6	24
117	Structural and spectroscopic properties of γ-ray irradiated Er3+-doped lead phosphate glasses. Journal of Luminescence, 2018, 203, 322-330.	3.1	24
118	Raman and photoluminescence studies of europium doped zinc-fluorophosphate glasses for photonic applications. Journal of Non-Crystalline Solids, 2019, 505, 115-121.	3.1	24
119	Spectroscopic investigation and optical characterization of Eu3+ ions in K–Nb–Si glasses. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 118, 966-971.	3.9	22
120	Nanocrystalline Sm 3+ -doped Lu 3 Ga 5 O 12 garnets: An intense orange-reddish luminescent material for white light emitting devices. Journal of Luminescence, 2016, 179, 533-538.	3.1	22
121	Intense red emission via energy transfer from (Ce3+/Eu3+):P2O5+NaF+CaF2+AlF3 glasses for warm light sources. Ceramics International, 2021, 47, 1962-1969.	4.8	22
122	Effect of BaF 2 addition on luminescence properties of Er 3+ /Yb 3+ co-doped phosphate glasses. Journal of Rare Earths, 2018, 36, 58-63.	4.8	21
123	Crystals field energy levels and transition line strengths of neodymium in trigonal Na3[Nd(oxydiacetate)3]·2NaClO4·6H2O. Chemical Physics, 1989, 138, 123-138.	1.9	20
124	Laser transition characteristics of Nd3+-doped fluorophosphate laser glasses. Journal of Non-Crystalline Solids, 2007, 353, 1402-1406.	3.1	20
125	1.06μ4m laser transition characteristics of Nd3+-doped fluorophosphate glasses. Materials Chemistry and Physics, 2009, 117, 131-137.	4.0	20
126	Optical absorption and fluorescence properties of Tm3+-doped K–Mg–Al phosphate glasses for laser applications. Journal of Alloys and Compounds, 2010, 496, 335-340.	5.5	20

#	Article	IF	CITATIONS
127	Spin-correlated crystal-field interactions in NdF3, Nd3+:LaF3, and Nd3+:LiYF4. Inorganica Chimica Acta, 1987, 139, 287-290.	2.4	19
128	White light generation from Dy3+-doped yttrium aluminium gallium mixed garnet nano-powders. Journal of Luminescence, 2016, 170, 262-270.	3.1	18
129	Comparative energy level parametrizations for lanthanide ions in octahedral symmetry environments. Journal of Alloys and Compounds, 1995, 225, 85-88.	5.5	17
130	Photon avalanche upconversion in Ho3+–Yb3+ co-doped transparent oxyfluoride glass–ceramics. Chemical Physics Letters, 2014, 600, 34-37.	2.6	17
131	Conversion of blue-green photon into NIR photons in Ho3+/Yb3+ co-doped zinc tellurite glasses. Journal of Alloys and Compounds, 2019, 788, 1048-1055.	5.5	17
132	Enhancement of 1.8 μm emission in Er3+/Tm3+ co-doped tellurite glasses: Role of energy transfer and dual wavelength pumping schemes. Journal of Alloys and Compounds, 2020, 827, 154038.	5.5	17
133	Optical properties of Tm3+ ions in zinc borosulphate glasses and comparative energy level analyses of Tm3+ ions in various glasses. Journal of Non-Crystalline Solids, 1994, 176, 213-229.	3.1	16
134	Optical properties of Nd3+ ions in cadmium borosulphate glasses and comparative energy level analyses of Nd3+ ions in various glasses. Physica B: Condensed Matter, 1996, 226, 313-330.	2.7	16
135	Electronic transitions, crystal field analysis and anomalous levels splittings in the optical spectrum of Pr3+ in La2O3 and Pr2O3. Journal of Luminescence, 1999, 85, 59-70.	3.1	16
136	Effect of pressure on luminescence properties of Sm3+ ions in potassium niobate tellurite glass. Journal of Luminescence, 2008, 128, 718-720.	3.1	16
137	Photoluminescence properties of Ho3+/Tm3+-doped YAGG nano-crystalline powders. Optical Materials, 2017, 72, 666-672.	3.6	16
138	A critical review and future prospects of Dy3+-doped glasses for white light emission applications. Optik, 2022, 266, 169583.	2.9	16
139	Investigations on energy transfer and tunable luminescence spectra for single, co-doped and tri-doped RE3+(RE3+= Dy3+, Sm3+ and Eu3+) activated Sr1.99Bi0.01CeO4 phosphors. Optical Materials, 2018, 85, 464-473.	3.6	15
140	Investigation of modifier effect on the spectroscopic properties of Sm3+ ions in binary boro‑bismuth glasses. Journal of Non-Crystalline Solids, 2019, 505, 367-378.	3.1	15
141	Visible to infrared emission from (Eu3+/Nd3+):B2O3Â+ÂAlF3Â+ÂNaFÂ+ÂCaF2 glasses for luminescent solar converters. Optics and Laser Technology, 2021, 141, 107170.	4.6	15
142	Judd-Ofelt intensity analysis and spectral studies of Pr(III) ions in alkali zinc borosulphate glasses. Materials Chemistry and Physics, 1996, 46, 84-91.	4.0	14
143	Synthesis and photoluminescence properties of Sr0.95Ba0.05La2-xO4:xRE3+(RE=Eu,Er,Ce and Ho) for WLEDs application. Journal of Alloys and Compounds, 2018, 732, 1-8.	5.5	14
144	Photoluminescence and energy transfer studies in Ce3+ and Sm3+ activated P2O5+K2O+Al2O3+BaF2+NaF2 glasses for solid state lighting. Optical Materials, 2020, 99, 109576.	3.6	14

#	Article	IF	CITATIONS
145	Re-examination of the 4f3 energy parameters for several systems with neodymium—oxygen atom coordination. Inorganica Chimica Acta, 1987, 139, 291-294.	2.4	13
146	Blue–green cooperative upconverted luminescence and radiative energy transfer in Yb 3+ -doped tungsten tellurite glass. Journal of Luminescence, 2016, 169, 233-237.	3.1	13
147	Thermal, structural, mechanical and 1.8â€ [−] μm luminescence properties of the thulium doped Pb-K-Al-Na glasses for optical fiber amplifiers. Journal of Non-Crystalline Solids, 2020, 530, 119773.	3.1	13
148	Spectroscopic investigations of Pr(III) ions in alkali cadmium borosulphate glasses. Journal of Non-Crystalline Solids, 1993, 163, 249-260.	3.1	12
149	Comparative correlation crystal field analysis of Er3+ (4f11) in garnet hosts. Journal of Alloys and Compounds, 1994, 207-208, 74-77.	5.5	12
150	The energy transfer efficiency from Yb 3+ to Nd 3+ in SrO Pb 3 O 4 ZnO P 2 O 5 glass system-Influence of lead ions. Journal of Luminescence, 2017, 187, 281-289.	3.1	12
151	Theoretical calculations and experimental investigations of lead phosphate glasses singly doped with Pr3+ and Tm3+ ions using luminescence spectroscopy. Journal of Alloys and Compounds, 2020, 842, 155801.	5.5	12
152	Spin-correlated crystal-field analysis and temperature-dependent paramagnetic susceptibility of neodymium gallium garnet. Journal of Physics and Chemistry of Solids, 1988, 49, 975-980.	4.0	11
153	Electronic spectra and crystal-field analysis of DyCl3- 6 in elpasolite lattices. Molecular Physics, 1988, 65, 49-63.	1.7	11
154	Photon avalanche upconversion in Ho3+-doped gallium nano-garnets. Optical Materials, 2015, 39, 16-20.	3.6	11
155	Optical and white light emission properties of Dy3+ ions doped zinc oxyfluorotellurite glasses. Physica B: Condensed Matter, 2021, 614, 413037.	2.7	11
156	Optical characteristics of (Eu3+,Nd3+) co-doped leadfluorosilicate glasses for enhanced photonic device applications. Journal of Luminescence, 2020, 223, 117210.	3.1	10
157	Comparative analysis of free-ion energy levels of Er3+ (4f11) in various crystal hosts. Journal of Alloys and Compounds, 1993, 193, 203-206.	5.5	9
158	Compositional dependence of optical properties of Pr3+ ions in lithium borate glasses. Journal of Alloys and Compounds, 1998, 275-277, 369-373.	5.5	9
159	Fluorescence and Spectroscopic Properties of Yb3+-Doped Phosphate Glasses. Physics Procedia, 2012, 29, 109-113.	1.2	8
160	Optical properties and paramagnetic susceptibility of europium gallium garnet. Chemical Physics Letters, 1986, 125, 290-294.	2.6	7
161	Influence of Bi3+ ions on optical and luminescence properties of multi- component P2O5─PbO─Ga2O3 ─Pr2O3 glass system. Optical Materials, 2018, 77, 178-186.	3.6	7
162	Effect of gamma irradiation on physical, optical, spectroscopic and structural properties of Er3+-doped vitreous zinc borotellurite. Journal of Luminescence, 2021, 235, 118031.	3.1	7

#	Article	IF	CITATIONS
163	Optical absorption spectra of the tripositive erbium ion in certain acetate complexes. Spectrochimica Acta Part A: Molecular Spectroscopy, 1984, 40, 695-704.	0.1	6
164	Spectral investigations of Sm3+/Yb3+: TeO2Â+ ZnOÂ+ Nb2O5Â+TiO2 glasses for the conversion of Si -based solar cell applications. Journal of Alloys and Compounds, 2018, 750, 420-427.	5.5	6
165	Structural and luminescence properties of Sm 3+ -doped Ca 2 SiO 4 phosphors from agricultural waste. Materials Today: Proceedings, 2018, 5, 15081-15085.	1.8	6
166	Influence of heat treatment on spectroscopic and structural properties of vitreous Er3+-doped zinc borotellurite. Journal of Non-Crystalline Solids, 2020, 530, 119842.	3.1	6
167	Energy transfer and red fluorescence properties of (Ce3+/Eu3+):Fluorophosphate glasses for lighting applications. Journal of Non-Crystalline Solids, 2020, 549, 120333.	3.1	6
168	Spectral Investigations of Dy ³⁺ -Doped Gd ₂ O ₃ -CaO-P ₂ O ₅ Glasses. Key Engineering Materials, 2016, 675-676, 384-388.	0.4	5
169	Photoluminescence study of barium borophosphate glasses doped with Sm 3+ ions. Materials Today: Proceedings, 2018, 5, 15049-15053.	1.8	5
170	Er3+ activated and Yb3+ sensitized upconversion photoluminesecse in zirconium titanate nano powders. Solid State Sciences, 2020, 105, 106232.	3.2	5
171	Photoluminescence characteristics of Ln3+-doped phosphors derived from sustainable resources for solid state lightning applications. Optik, 2022, 264, 169360.	2.9	5
172	Exploring thermal, optical, structural and luminescent properties of gamma irradiated Dy3+doped tellurite glasses: Photon shielding properties. Radiation Physics and Chemistry, 2022, 199, 110375.	2.8	5
173	Optical properties of Pr3+ in alkali zinc borosulphate glasses. Journal of Alloys and Compounds, 1993, 193, 189-191.	5.5	4
174	Spectroscopic Properties and Judd-Ofelt Analysis of Dy ³⁺ in Lithium Lanthanum Borate Glass for Laser Medium Application. Key Engineering Materials, 2016, 675-676, 389-392.	0.4	4
175	Effect of borate and bismuth glass compositions on luminescence properties of rare earth ions. Materials Today: Proceedings, 2018, 5, 14986-14991.	1.8	4
176	Down conversion studies in Ce3+ and Yb3+ doped Ca2SiO4 phosphors from agricultural waste: Si based solar cell applications. Optical Materials, 2021, 122, 111700.	3.6	4
177	Agricultural waste for the development of low cost Ca2SiO4:Pr3+ phosphors. Journal of Luminescence, 2022, 250, 119059.	3.1	4
178	Spectroscopic Investigation and Optical Properties of Eu ³⁺ -Doped Fluorophosphate Glasses. Key Engineering Materials, 2016, 675-676, 418-423.	0.4	2
179	Optical, Luminescence and Judd-Oflet Study of Eu ³⁺ Doped Lithium Yttrium Borate Glasses for Using as Laser Gain Medium. Key Engineering Materials, 2016, 675-676, 364-367.	0.4	2
180	Optical spectra of thulium(III) ion in certain nitrate, sulphate and acetate complexes. Journal of the Less Common Metals, 1985, 112, 137-140.	0.8	1

#	Article	IF	CITATIONS
181	Red, Green, Blue and IR emitting zirconium Titanate nano composite co-doped with Er3+/Tm3+/Yb3+ synthesized by combustion synthesis. Optical Materials, 2021, 121, 111534.	3.6	1
182	Interaction and intensity parameters for erbium(III) in certain acetate, nitrate and sulphate complexes. Journal of the Less Common Metals, 1986, 126, 233-238.	0.8	0
183	Effect of concentration on spectral properties of lanthanide ions-doped fluorophosphate glasses. Materials Today: Proceedings, 2018, 5, 14981-14985.	1.8	Ο