List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10829067/publications.pdf

Version: 2024-02-01

116	5,573	42	72
papers	citations	h-index	g-index
116	116	116	3743
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Forecasting electricity prices for a day-ahead pool-based electric energy market. International Journal of Forecasting, 2005, 21, 435-462.	3.9	438
2	A Three-Level Static MILP Model for Generation and Transmission Expansion Planning. IEEE Transactions on Power Systems, 2013, 28, 202-210.	4.6	216
3	Transmission Expansion Planning in Electricity Markets. IEEE Transactions on Power Systems, 2008, 23, 238-248.	4.6	211
4	Joint Expansion Planning of Distributed Generation and Distribution Networks. IEEE Transactions on Power Systems, 2015, 30, 2579-2590.	4.6	195
5	Unit Commitment With Ideal and Generic Energy Storage Units. IEEE Transactions on Power Systems, 2014, 29, 2974-2984.	4.6	177
6	Optimal Distributed Generation and Reactive Power Allocation in Electrical Distribution Systems. IEEE Transactions on Sustainable Energy, 2016, 7, 975-984.	5.9	160
7	Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storage—Part I: Stochastic Programming Model. IEEE Transactions on Smart Grid, 2018, 9, 655-666.	6.2	160
8	Impact of Electric Vehicles on the Expansion Planning of Distribution Systems Considering Renewable Energy, Storage, and Charging Stations. IEEE Transactions on Smart Grid, 2019, 10, 794-804.	6.2	160
9	Multistage Generation and Network Expansion Planning in Distribution Systems Considering Uncertainty and Reliability. IEEE Transactions on Power Systems, 2016, 31, 3715-3728.	4.6	155
10	Medium-term energy hub management subject to electricity price and wind uncertainty. Applied Energy, 2016, 168, 418-433.	5.1	150
11	A Chance-Constrained Unit Commitment With an \$n-K\$ Security Criterion and Significant Wind Generation. IEEE Transactions on Power Systems, 2013, 28, 2842-2851.	4.6	143
12	Distribution System Planning With Reliability. IEEE Transactions on Power Delivery, 2011, 26, 2552-2562.	2.9	140
13	\$Z_{m bus}\$ Transmission Network Cost Allocation. IEEE Transactions on Power Systems, 2007, 22, 342-349.	4.6	115
14	Bi-Level Approach to Distribution Network and Renewable Energy Expansion Planning Considering Demand Response. IEEE Transactions on Power Systems, 2017, 32, 4298-4309.	4.6	112
15	A Stochastic Bilevel Model for the Energy Hub Manager Problem. IEEE Transactions on Smart Grid, 2017, 8, 2394-2404.	6.2	112
16	Optimal coordinated wind-hydro bidding strategies in day-ahead markets. IEEE Transactions on Power Systems, 2013, 28, 798-809.	4.6	111
17	Daily pattern prediction based classification modeling approach for day-ahead electricity price forecasting. International Journal of Electrical Power and Energy Systems, 2019, 105, 529-540.	3.3	100
18	A Stochastic Investment Model for Renewable Generation in Distribution Systems. IEEE Transactions on Sustainable Energy, 2015, 6, 1466-1474.	5.9	92

#	Article	IF	Citations
19	If you build it, he will come: Anticipative power transmission planning. Energy Economics, 2013, 36, 135-146.	5.6	89
20	Multiobjective multistage distribution system planning using tabu search. IET Generation, Transmission and Distribution, 2014, 8, 35-45.	1.4	88
21	Finding Multiple Nash Equilibria in Pool-Based Markets: A Stochastic EPEC Approach. IEEE Transactions on Power Systems, 2011, 26, 1744-1752.	4.6	84
22	Optimal investment portfolio in renewable energy: The Spanish case. Energy Policy, 2009, 37, 5273-5284.	4.2	83
23	Optimal Contract Pricing of Distributed Generation in Distribution Networks. IEEE Transactions on Power Systems, 2011, 26, 128-136.	4.6	81
24	Risk-Constrained Optimal Bidding Strategy for Pairing of Wind and Demand Response Resources. IEEE Transactions on Smart Grid, 2017, 8, 200-208.	6.2	81
25	Distribution Network Expansion Planning With an Explicit Formulation for Reliability Assessment. IEEE Transactions on Power Systems, 2018, 33, 2583-2596.	4.6	78
26	Location and contract pricing of distributed generation using a genetic algorithm. International Journal of Electrical Power and Energy Systems, 2012, 36, 117-126.	3.3	74
27	Bilevel approach for optimal location and contract pricing of distributed generation in radial distribution systems using mixedâ€integer linear programming. IET Generation, Transmission and Distribution, 2013, 7, 724-734.	1.4	71
28	Basic theoretical foundations and insights on bilevel models and their applications to power systems. Annals of Operations Research, 2017, 254, 303-334.	2.6	70
29	Optimal Single Wind Hydro-Pump Storage Bidding in Day-Ahead Markets Including Bilateral Contracts. IEEE Transactions on Sustainable Energy, 2016, 7, 1284-1294.	5.9	69
30	Contingency Assessment and Network Reconfiguration in Distribution Grids Including Wind Power and Energy Storage. IEEE Transactions on Sustainable Energy, 2015, 6, 1524-1533.	5.9	67
31	Joint Distribution Network and Renewable Energy Expansion Planning Considering Demand Response and Energy Storage—Part II: Numerical Results. IEEE Transactions on Smart Grid, 2018, 9, 667-675.	6.2	62
32	The impact of electric vehicle charging schemes in power system expansion planning. Applied Energy, 2020, 262, 114527.	5.1	62
33	Risk-constrained self-scheduling of a hybrid power plant considering interval-based intraday demand response exchange market prices. Journal of Cleaner Production, 2021, 282, 125344.	4.6	61
34	Novel Multi-Stage Stochastic DG Investment Planning with Recourse. IEEE Transactions on Sustainable Energy, 2017, 8, 164-178.	5.9	60
35	Trilateral Planning Model for Integrated Community Energy Systems and PV-Based Prosumers—A Bilevel Stochastic Programming Approach. IEEE Transactions on Power Systems, 2020, 35, 346-361.	4.6	55
36	Optimal Scheduling of a Price-Taker Cascaded Reservoir System in a Pool-Based Electricity Market. IEEE Transactions on Power Systems, 2011, 26, 604-615.	4.6	54

#	Article	IF	Citations
37	Optimal Bidding of a Group of Wind Farms in Day-Ahead Markets Through an External Agent. IEEE Transactions on Power Systems, 2016, 31, 2688-2700.	4.6	52
38	Modeling the Impact of a Wind Power Producer as a Price-Maker. IEEE Transactions on Power Systems, 2014, 29, 2723-2732.	4.6	51
39	A Stochastic Bilevel Model to Manage Active Distribution Networks With Multi-Microgrids. IEEE Systems Journal, 2019, 13, 4190-4199.	2.9	47
40	Impacts of Stochastic Wind Power and Storage Participation on Economic Dispatch in Distribution Systems. IEEE Transactions on Sustainable Energy, 2016, 7, 1336-1345.	5.9	45
41	Reliability Assessment for Distribution Optimization Models: A Non-Simulation-Based Linear Programming Approach. IEEE Transactions on Smart Grid, 2018, 9, 3048-3059.	6.2	44
42	Distribution System Expansion Planning Considering Non-Utility-Owned DG and an Independent Distribution System Operator. IEEE Transactions on Power Systems, 2019, 34, 2588-2597.	4.6	43
43	An Enhanced Algebraic Approach for the Analytical Reliability Assessment of Distribution Systems. IEEE Transactions on Power Systems, 2019, 34, 2870-2879.	4.6	42
44	An overview on network cost allocation methods. Electric Power Systems Research, 2009, 79, 750-758.	2.1	41
45	A Multi-Stage Stochastic Non-Linear Model for Reactive Power Planning Under Contingencies. IEEE Transactions on Power Systems, 2013, 28, 1503-1514.	4.6	41
46	A Multiobjective Optimization Technique to Develop Protection Systems of Distribution Networks With Distributed Generation. IEEE Transactions on Power Systems, 2018, 33, 7064-7075.	4.6	41
47	An incentive-based mechanism for transmission asset investment. Decision Support Systems, 2009, 47, 22-31.	3.5	40
48	EPEC approach for finding optimal day-ahead bidding strategy equilibria of multi-microgrids in active distribution networks. International Journal of Electrical Power and Energy Systems, 2020, 117, 105702.	3.3	38
49	An Effective Transmission Network Expansion Cost Allocation Based on Game Theory. IEEE Transactions on Power Systems, 2007, 22, 136-144.	4.6	35
50	Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response. Energies, 2019, 12, 1413.	1.6	35
51	An Enhanced MILP Model for Multistage Reliability-Constrained Distribution Network Expansion Planning. IEEE Transactions on Power Systems, 2022, 37, 118-131.	4.6	34
52	Energy storage and transmission expansion planning: substitutes or complements?. IET Generation, Transmission and Distribution, 2018, 12, 1738-1746.	1.4	33
53	Risk-involved optimal operating strategy of a hybrid power generation company: A mixed interval-CVaR model. Energy, 2021, 232, 120975.	4.5	33
54	Multi-agent approach to the planning of power transmission expansion. Decision Support Systems, 2000, 28, 279-290.	3.5	32

#	Article	IF	Citations
55	Impacts of Operational Variability and Uncertainty on Distributed Generation Investment Planning: A Comprehensive Sensitivity Analysis. IEEE Transactions on Sustainable Energy, 2017, 8, 855-869.	5.9	31
56	When doing nothing may be the best investment action: Pessimistic anticipative power transmission planning. Applied Energy, 2017, 200, 383-398.	5.1	27
57	Integrated Transmission and Distribution System Expansion Planning Under Uncertainty. IEEE Transactions on Smart Grid, 2021, 12, 4113-4125.	6.2	26
58	Reactive power planning under conditionalâ€valueâ€atâ€risk assessment using chanceâ€constrained optimisation. IET Generation, Transmission and Distribution, 2015, 9, 231-240.	1.4	24
59	Optimal Placement of Energy Storage and Wind Power under Uncertainty. Energies, 2016, 9, 528.	1.6	24
60	Min–max long run marginal cost to allocate transmission tariffs for transmission users. Electric Power Systems Research, 2013, 101, 25-35.	2.1	21
61	Linear Formulations for Topology-Variable-Based Distribution System Reliability Assessment Considering Switching Interruptions. IEEE Transactions on Smart Grid, 2020, 11, 4032-4043.	6.2	21
62	A convex chance-constrained model for reactive power planning. International Journal of Electrical Power and Energy Systems, 2015, 71, 403-411.	3.3	20
63	Medium―and lowâ€voltage planning of radial electric power distribution systems considering reliability. IET Generation, Transmission and Distribution, 2017, 11, 2212-2221.	1.4	20
64	Integrated operational planning model, considering optimal delivery routing, incentives and electric vehicle aggregated demand management. Applied Energy, 2021, 304, 117698.	5.1	18
65	ECOTOOL: A general MATLAB Forecasting Toolbox with Applications to Electricity Markets. Energy Systems, 2012, , 151-171.	0.5	17
66	Long-term Nash equilibria in electricity markets. Electric Power Systems Research, 2011, 81, 329-339.	2.1	16
67	Impact of network payment schemes on transmission expansion planning with variable renewable generation. Energy Economics, 2016, 56, 410-421.	5.6	16
68	Wind Put Barrier Options Pricing Based on the Nordix Index. Energies, 2021, 14, 1177.	1.6	16
69	Portfolio Decision of Short-Term Electricity Forecasted Prices through Stochastic Programming. Energies, 2016, 9, 1069.	1.6	15
70	Offering and bidding for a wind producer paired with battery and CAES units considering battery degradation. International Journal of Electrical Power and Energy Systems, 2022, 136, 107685.	3.3	15
71	Multistage reliability-based expansion planning of ac distribution networks using a mixed-integer linear programming model. International Journal of Electrical Power and Energy Systems, 2022, 138, 107916.	3.3	15
72	Optimal Wind Reversible Hydro Offering Strategies for Midterm Planning. IEEE Transactions on Sustainable Energy, 2015, 6, 1356-1366.	5.9	14

#	Article	IF	Citations
73	Efficient Automation of an HEV Heterogeneous Fleet Using a Two-Stage Methodology. IEEE Transactions on Vehicular Technology, 2019, 68, 9494-9506.	3.9	14
74	Optimal Selection of Navigation Modes of HEVs Considering CO ₂ Emissions Reduction. IEEE Transactions on Vehicular Technology, 2019, 68, 2196-2206.	3.9	14
7 5	A MILP model to relieve the occurrence of new demand peaks by improving the load factor in smart homes. Sustainable Cities and Society, 2021, 71, 102969.	5.1	13
76	GARCH-based put option valuation to maximize benefit of wind investors. Applied Energy, 2014, 136, 259-268.	5.1	12
77	A Stackelberg Game-Based Approach for Transactive Energy Management in Smart Distribution Networks. Energies, 2020, 13, 3621.	1.6	12
78	Medium-term planning of active distribution systems considering voltage-dependent loads, network reconfiguration, and CO2 emissions. International Journal of Electrical Power and Energy Systems, 2022, 135, 107541.	3.3	12
79	A Principal-Agent Approach to Transmission Expansionâ€"Part I: Regulatory Framework. IEEE Transactions on Power Systems, 2013, 28, 256-263.	4.6	11
80	Incentives for wind power investment in Colombia. Renewable Energy, 2016, 87, 279-288.	4.3	11
81	Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement. Energies, 2021, 14, 3624.	1.6	11
82	Risk-constrained dynamic energy allocation for a wind power producer. Electric Power Systems Research, 2014, 116, 338-346.	2.1	10
83	Islanding in distribution systems considering wind power and storage. Sustainable Energy, Grids and Networks, 2016, 5, 156-166.	2.3	10
84	A Multiobjective Minimax Regret Robust VAr Planning Model. IEEE Transactions on Power Systems, 2017, 32, 1761-1771.	4.6	10
85	Construction of an efficient portfolio of power purchase decisions based on risk-diversification tradeoff. Energy Economics, 2017, 64, 286-297.	5.6	9
86	The role of EV based peer-to-peer transactive energy hubs in distribution network optimization. Applied Energy, 2022, 319, 119267.	5.1	9
87	A New Transmission Tariff Allocation Model Based on Bilevel Programming. IEEE Transactions on Power Systems, 2017, 32, 2204-2213.	4.6	8
88	An Enhanced Delivery Route Operational Planning Model for Electric Vehicles. IEEE Access, 2020, 8, 141762-141776.	2.6	8
89	Competition of Thermal Electricity Generators with Coupled Transmission and Emission Constraints. Journal of Energy Engineering - ASCE, 2013, 139, 239-252.	1.0	7
90	Raiffa-Kalai-Smorodinsky Bargaining Solution for Bilateral Contracts in Electricity Markets. Energies, 2020, 13, 2397.	1.6	7

#	Article	IF	CITATIONS
91	Diversified behavioral portfolio as an alternative to Modern Portfolio Theory. North American Journal of Economics and Finance, 2021, 58, 101508.	1.8	7
92	Forecasting Models of Electricity Prices. Energies, 2017, 10, 160.	1.6	6
93	A Stochastic Model for Medium-Term Distribution System Planning Considering CO ₂ Emissions., 2020,,.		6
94	Optimal generic energy storage system offering in day-ahead electricity markets. , 2015, , .		5
95	A new parallel and decomposition approach to solve the medium- and low-voltage planning of large-scale power distribution systems. International Journal of Electrical Power and Energy Systems, 2021, 132, 107191.	3.3	5
96	A Microgrid Model With EV Demand Uncertainty and Detailed Operation of Storage Systems. IEEE Transactions on Industry Applications, 2022, 58, 2497-2511.	3.3	5
97	Control and protection of active distribution systems using a new multiobjective mathematical model. , 2017, , .		4
98	A Benders' Decomposition Approach for Renewable Generation Investment in Distribution Systems. Energies, 2020, 13, 1225.	1.6	4
99	Multiobjective Approach for Medium- and Low-Voltage Planning of Power Distribution Systems Considering Renewable Energy and Robustness. Energies, 2020, 13, 2517.	1.6	4
100	Approaches to transmission planning: A transmission expansion game. , 2012, , .		3
101	Optimal expansion model of renewable distributed generation in distribution systems. , 2014, , .		2
102	Impacts of network expansion on generation capacity expansion. , 2014, , .		2
103	Playing Pollution Games with Thermal Electricity Generators. Environmental Modeling and Assessment, 2018, 23, 639-651.	1.2	2
104	Distribution System Expansion Planning. Power Systems, 2018, , 1-39.	0.3	2
105	A Probability-Based Algorithm for Electric Vehicle Behaviour in a Microgrid with Renewable Energy and Storage Devices. , 2020, , .		2
106	Transmission Asset Investment in Electricity Markets. Journal of Energy Engineering - ASCE, 2009, 135, 55-63.	1.0	1
107	Static and Dynamic Convex Distribution Network Expansion Planning. Power Systems, 2018, , 41-63.	0.3	1
108	Short-Term Trading for a Concentrating Solar Power Producer in Electricity Markets. , 2018, , .		1

#	Article	IF	CITATIONS
109	Optimization-Based Distribution System Reliability Evaluation: An Enhanced MILP Model., 2021,,.		1
110	Finding Multiple Equilibria for Raiffa–Kalai–Smorodinsky and Nash Bargaining Equilibria in Electricity Markets: A Bilateral Contract Model. Designs, 2021, 5, 3.	1.3	1
111	Planning Long-Term Network Expansion in Electric Energy Systems in Multi-area Settings. Energy Systems, 2012, , 367-393.	0.5	1
112	Electric Distribution Network Planning Under Uncertainty. Energy Systems, 2020, , 293-323.	0.5	1
113	A multiobjective model for distribution system planning based on tabu search. , 2013, , .		O
114	Optimal expansion planning in distribution networks with distributed generation., 2014,,.		0
115	Distributed Power Generation Scheduling, Modeling, and Expansion Planning. Energies, 2021, 14, 7757.	1.6	O
116	Resilience enhancement in the planning of medium-and low voltage power distribution systems with microgrid formation. , 2021, , .		0