
## Sonja Visentin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082799/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | New 1,4-Dihydropyridines Conjugated to Furoxanyl Moieties, Endowed with Both Nitric Oxide-like and<br>Calcium Channel Antagonist Vasodilator Activities. Journal of Medicinal Chemistry, 1998, 41, 5393-5401.                                       | 6.4 | 106       |
| 2  | Determination of carnosine, anserine, homocarnosine, pentosidine and thiobarbituric acid reactive substances contents in meat from different animal species. Food Chemistry, 2011, 126, 1939-1947.                                                  | 8.2 | 99        |
| 3  | Effect of cooking method on carnosine and its homologues, pentosidine and thiobarbituric acid-reactive substance contents in beef and turkey meat. Food Chemistry, 2012, 132, 80-85.                                                                | 8.2 | 64        |
| 4  | Squaraines bearing halogenated moieties as anticancer photosensitizers: Synthesis, characterization and biological evaluation. European Journal of Medicinal Chemistry, 2016, 113, 187-197.                                                         | 5.5 | 50        |
| 5  | Design and synthesis of symmetrical pentamethine cyanine dyes as NIR photosensitizers for PDT. Dyes and Pigments, 2019, 160, 806-813.                                                                                                               | 3.7 | 50        |
| 6  | New 1,4-Dihydropyridines Endowed with NO-Donor and Calcium Channel Agonist Properties. Journal of Medicinal Chemistry, 2004, 47, 2688-2693.                                                                                                         | 6.4 | 46        |
| 7  | NO donor and biological properties of different benzofuroxans. Pharmaceutical Research, 1999, 16, 956-960.                                                                                                                                          | 3.5 | 45        |
| 8  | Synthesis and Voltage-Clamp Studies of Methyl<br>1,4-Dihydro-2,6-dimethyl-5-nitro-4-(benzofurazanyl)pyridine-3-carboxylate Racemates and Enantiomers<br>and of Their Benzofuroxanyl Analogues. Journal of Medicinal Chemistry, 1999, 42, 1422-1427. | 6.4 | 38        |
| 9  | Mucin–drugs interaction: The case of theophylline, prednisolone and cephalexin. Bioorganic and<br>Medicinal Chemistry, 2015, 23, 6581-6586.                                                                                                         | 3.0 | 29        |
| 10 | Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery. Journal of Materials Chemistry B, 2019, 7, 4940-4952.                                                                                     | 5.8 | 27        |
| 11 | Squaraine Dyes: Interaction with Bovine Serum Albumin to Investigate Supramolecular Adducts with<br>Aggregationâ€Induced Emission (AIE) Properties. Chemistry - an Asian Journal, 2019, 14, 896-903.                                                | 3.3 | 27        |
| 12 | Exploring gold nanoparticles interaction with mucins: A spectroscopic-based study. International<br>Journal of Pharmaceutics, 2018, 535, 438-443.                                                                                                   | 5.2 | 26        |
| 13 | Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 1: A<br>radiobiological model study. Medical Physics, 2017, 44, 1983-1992.                                                                               | 3.0 | 24        |
| 14 | Polymethine dyes for PDT: recent advances and perspectives to drive future applications.<br>Photochemical and Photobiological Sciences, 2022, 21, 397-419.                                                                                          | 2.9 | 23        |
| 15 | GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: The case of hERG K+ channel blockers. European Journal of Medicinal Chemistry, 2009, 44, 1926-1932.                                                      | 5.5 | 21        |
| 16 | The different kinetic behavior of two potential photosensitizers for PDT. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 38-43.                                                                                                | 3.9 | 19        |
| 17 | From tissue engineering to engineering tissues: the role and application of <i>in vitro</i> models.<br>Biomaterials Science, 2021, 9, 70-83.                                                                                                        | 5.4 | 19        |
| 18 | Microwave-assisted Maillard reactions for the preparation of advanced glycation end products (AGEs). Organic and Biomolecular Chemistry, 2010, 8, 2473.                                                                                             | 2.8 | 18        |

Sonja Visentin

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Mucin binding to therapeutic molecules: The case of antimicrobial agents used in cystic fibrosis.<br>International Journal of Pharmaceutics, 2019, 564, 136-144.                                       | 5.2 | 18        |
| 20 | Interaction of squaraine dyes with proteins: Looking for more efficient fluorescent turn-on probes.<br>Dyes and Pigments, 2021, 184, 108873.                                                           | 3.7 | 18        |
| 21 | Application of 3D Mass Spectrometry Imaging to TKIs. Clinical Pharmacology and Therapeutics, 2017, 102, 748-751.                                                                                       | 4.7 | 17        |
| 22 | A sensitive and practical fluorimetric test for CNT acidic site determination. Chemical Communications, 2010, 46, 1443.                                                                                | 4.1 | 16        |
| 23 | Insight into the interaction of inhaled corticosteroids with human serum albumin: A spectroscopic-based study. Journal of Pharmaceutical Analysis, 2018, 8, 37-44.                                     | 5.3 | 16        |
| 24 | Studies on agents with mixed NO-dependent and calcium channel antagonistic vasodilating activities.<br>Pharmaceutical Research, 2001, 18, 157-165.                                                     | 3.5 | 15        |
| 25 | Searching for balanced hybrid NO-donor 1,4-dihydropyridines with basic properties. Pharmaceutical Research, 2001, 18, 987-991.                                                                         | 3.5 | 14        |
| 26 | Cystic Fibrosis Mucus Model to Design More Efficient Drug Therapies. Molecular Pharmaceutics, 2022,<br>19, 520-531.                                                                                    | 4.6 | 14        |
| 27 | Drug release kinetics from biodegradable UV-transparent hollow calcium-phosphate glass fibers.<br>Materials Letters, 2017, 191, 116-118.                                                               | 2.6 | 13        |
| 28 | A Nanostructured Matrices Assessment to Study Drug Distribution in Solid Tumor Tissues by Mass<br>Spectrometry Imaging. Nanomaterials, 2017, 7, 71.                                                    | 4.1 | 13        |
| 29 | Squaraine dyes as fluorescent turn-on sensors for the detection of porcine gastric mucin: A spectroscopic and kinetic study. Journal of Photochemistry and Photobiology B: Biology, 2020, 205, 111838. | 3.8 | 13        |
| 30 | Profile of the intermolecular forces governing the interaction of drugs with mucin. International<br>Journal of Pharmaceutics, 2015, 488, 67-69.                                                       | 5.2 | 12        |
| 31 | Nitroanilines are the reduction products of benzofuroxan system by oxyhemoglobin (HbO22+). Il<br>Farmaco, 2001, 56, 799-802.                                                                           | 0.9 | 11        |
| 32 | Functionalization of Single-Walled Carbon Nanotubes through 1,3-CycloÂaddition of Carbonyl Ylides<br>under Microwave Irradiation. Synlett, 2012, 23, 1459-1462.                                        | 1.8 | 9         |
| 33 | Effect of dietary supplementation of vitamin E in pigs to prevent the formation of carcinogenic substances in meat products. Journal of Food Composition and Analysis, 2013, 30, 67-72.                | 3.9 | 9         |
| 34 | Mucosomes: Intrinsically Mucoadhesive Glycosylated Mucin Nanoparticles as Multiâ€Đrug Delivery<br>Platform. Advanced Healthcare Materials, 2022, 11, .                                                 | 7.6 | 9         |
| 35 | A transient kinetic study between signaling proteins: the case of the MEK–ERK interaction. Chemical<br>Science, 2011, 2, 1804.                                                                         | 7.4 | 8         |
| 36 | Photodynamic activity of thiophene-derived lysosome-specific dyes. Journal of Photochemistry and<br>Photobiology B: Biology, 2016, 158, 16-22.                                                         | 3.8 | 7         |

Sonja Visentin

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nanomaterial–protein interactions: the case of pristine and functionalized carbon nanotubes and porcine gastric mucin. Journal of Nanoparticle Research, 2016, 18, 1.                                              | 1.9  | 7         |
| 38 | Polymethine dyes-loaded solid lipid nanoparticles (SLN) as promising photosensitizers for biomedical<br>applications. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2022, 271,<br>120909. | 3.9  | 7         |
| 39 | Resolution of some 4-benzofurazanyl and 4-benzofuroxanyl 1,4-dihydropyridine derivatives by chiral HPLC on Whelk-01 and some polysaccharide chiral stationary phases. , 1999, 11, 602-608.                         |      | 6         |
| 40 | Ligand-based design, in silico ADME-Tox filtering, synthesis and biological evaluation to discover new<br>soluble 1,4-DHP-based CFTR activators. European Journal of Medicinal Chemistry, 2012, 55, 188-194.       | 5.5  | 6         |
| 41 | Targeted dose enhancement in radiotherapy for breast cancer using gold nanoparticles, part 2: A<br>treatment planning study. Medical Physics, 2017, 44, 1993-2001.                                                 | 3.0  | 6         |
| 42 | Unveiling the interaction between PDT active squaraines with ctDNA: A spectroscopic study.<br>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 250, 119224.                            | 3.9  | 6         |
| 43 | A PI3KÎ <sup>3</sup> mimetic peptide triggers CFTR gating, bronchodilation, and reduced inflammation in obstructive airway diseases. Science Translational Medicine, 2022, 14, eabl6328.                           | 12.4 | 6         |
| 44 | Platelet antiaggregatory effects and haemodynamic activity of two terfuroxan isomer pairs. Il<br>Farmaco, 2002, 57, 417-420.                                                                                       | 0.9  | 4         |
| 45 | Modeling ErbB2-p130Cas interaction to design new potential anticancer agents. Scientific Reports, 2019, 9, 3089.                                                                                                   | 3.3  | 4         |
| 46 | Bioinspired in vitro intestinal mucus model for 3D-dynamic culture of bacteria. , 2022, 139, 213022.                                                                                                               |      | 4         |
| 47 | Thermolysis of 4-(2-azido-3-nitrophenyl)-1,4-dihydropyridines as source of β-carboline derivatives and some related compounds. Tetrahedron Letters, 2001, 42, 4507-4510.                                           | 1.4  | 3         |
| 48 | Multivariate analysis applied to Raman mapping of dye-functionalized carbon nanotubes: a novel<br>approach to support the rational design of functional nanostructures. Analyst, The, 2015, 140,<br>5754-5763.     | 3.5  | 3         |
| 49 | Acid-base and lipophilic properties of peptide nucleic acid derivatives. Journal of Pharmaceutical<br>Analysis, 2021, 11, 638-645.                                                                                 | 5.3  | 2         |
| 50 | Hollow resorbable fiber for combined light and drug delivery: fiber development and analysis of release kinetics. , 2017, , .                                                                                      |      | 0         |
| 51 | Hydrogel-based platforms to mimic in vivo drug diffusion: A multicenter research. Biomedical Science and Engineering, 2020, 3, .                                                                                   | 0.0  | 0         |
| 52 | Molecular insight into drugs binding to ctDNA: the fluorescence fast kinetic analysis of diclofenac<br>and pentamidine. Monatshefte Für Chemie, 2022, 153, 105-111.                                                | 1.8  | 0         |