
Maria Elena Benavente Barzana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082659/publications.pdf

Version: 2024-02-01

Maria Elena Benavente

#	Article	IF	CITATIONS
1	Modern Approaches for the Genetic Improvement of Rice, Wheat and Maize for Abiotic Constraints-Related Traits: A Comparative Overview. Agronomy, 2021, 11, 376.	3.0	20
2	Exploring the End-Use Quality Potential of a Collection of Spanish Bread Wheat Landraces. Plants, 2021, 10, 620.	3.5	11
3	An F2 Barley Population as a Tool for Teaching Mendelian Genetics. Plants, 2021, 10, 694.	3.5	2
4	Genetic diversity of ribosomal loci (5S and 45S rDNA) and pSc119.2 repetitive DNA sequence among four species of Aegilops (Poaceae) from Algeria. Ukrainian Botanical Journal, 2021, 78, 414-425.	0.4	0
5	Genomic analysis of Spanish wheat landraces reveals their variability and potential for breeding. BMC Genomics, 2020, 21, 122.	2.8	30
6	Allelic Variation for Prolamins in Spanish Durum Wheat Landraces and Its Relationship with Quality Traits. Agronomy, 2020, 10, 136.	3.0	18
7	Worldwide Research Trends on Wheat and Barley: A Bibliometric Comparative Analysis. Agronomy, 2019, 9, 352.	3.0	266
8	Yield and Quality Performance of Traditional and Improved Bread and Durum Wheat Varieties under Two Conservation Tillage Systems. Sustainability, 2019, 11, 4522.	3.2	14
9	Grain mineral density of bread and durum wheat landraces from geochemically diverse native soils. Crop and Pasture Science, 2018, 69, 335.	1.5	6
10	Neutral molecular markers support common origin of aluminium tolerance in three congeneric grass species growing in acidic soils. AoB PLANTS, 2017, 9, plx060.	2.3	3
11	Population Structure in the Model Grass <i>Brachypodium distachyon</i> Is Highly Correlated with Flowering Differences across Broad Geographic Areas. Plant Genome, 2016, 9, plantgenome2015.08.0074.	2.8	29
12	Development and validation of chloroplast DNA markers to assist Aegilops geniculata and Aegilops neglecta germplasm management. Genetic Resources and Crop Evolution, 2016, 63, 401-407.	1.6	4
13	Use of thermographic imaging to screen for drought-tolerant genotypes in Brachypodium distachyon. Crop and Pasture Science, 2016, 67, 99.	1.5	6
14	Environmental niche variation and evolutionary diversification of the <i>Brachypodium distachyon</i> grass complex species in their native circumâ€Mediterranean range. American Journal of Botany, 2015, 102, 1073-1088.	1.7	73
15	The Mode and Regulation of Chromosome Pairing in Wheat–Alien Hybrids (Ph Genes, an Updated View). , 2015, , 133-162.		12
16	Validation of microsatellite markers for cytotype discrimination in the model grass <i>Brachypodium distachyon</i> . Genome, 2012, 55, 523-527.	2.0	26
17	Association between simple sequence repeat-rich chromosome regions and intergenomic translocation breakpoints in natural populations of allopolyploid wild wheats. Annals of Botany, 2011, 107, 65-76.	2.9	57
18	Complete characterization of wheat–alien metaphase I pairing in interspecific hybrids between durum wheat (Triticum turgidum L.) and jointed goatgrass (Aegilops cylindrica Host). Theoretical and Applied Genetics, 2009, 118, 1609-1616.	3.6	14

MARIA ELENA BENAVENTE

#	Article	IF	CITATIONS
19	Wheat-alien metaphase I pairing of individual wheat genomes and D genome chromosomes in interspecific hybrids between Triticum aestivum L. and Aegilops geniculata Roth. Theoretical and Applied Genetics, 2009, 119, 805-813.	3.6	27
20	Detection of intergenomic chromosome rearrangements in irradiated <i>Triticum aestivum</i> – <i>Aegilops biuncialis</i> amphiploids by multicolour genomic in situ hybridization. Genome, 2009, 52, 156-165.	2.0	44
21	A cytomolecular approach to assess the potential of gene transfer from a crop (Triticum turgidum L.) to a wild relative (Aegilops geniculata Roth.). Theoretical and Applied Genetics, 2006, 112, 657-664.	3.6	24
22	Are neopolyploids a likely route for a transgene walk to the wild? The Aegilops ovataâ€f×â€fTriticum turgidum durum case. Biological Journal of the Linnean Society, 2004, 82, 503-510.	1.6	28
23	Relationship between the levels of wheat-rye metaphase I chromosomal pairing and recombination revealed by GISH. Chromosoma, 1996, 105, 92-96.	2.2	34
24	Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C-banding ? A comparative analysis. Chromosoma, 1995, 103, 554-558.	2.2	25
25	Meiotic pairing in wheat-rye derivatives detected by genomic in situ hybridization and C-banding ? A comparative analysis. Chromosoma, 1995, 103, 554-558.	2.2	22
26	On the influence of decreased chiasma frequency on preferential MI pairing behaviour of rye chromosomes in wheat-rye derivatives. Chromosoma, 1992, 101, 365-373.	2.2	5
27	Pairing competition between identical and homologous chromosomes in autotetraploid rye heterozygous for interstitial C-bands. Chromosoma, 1989, 98, 225-232.	2.2	14
28	Pairing competition between metacentric and telocentric chromosomes in autotetraploid rye. Heredity, 1989, 62, 327-334.	2.6	8
29	Evidence for preferential pairing in telotrisomic plants of rye. Heredity, 1985, 55, 181-186.	2.6	5
30	Meiotic pairing of specific chromosome arms in triploid rye. Genome, 1984, 26, 717-722.	0.7	8