Imad Agha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10826436/publications.pdf Version: 2024-02-01

Імар Асна

#	Article	IF	CITATIONS
1	Tunable angle-independent mid-infrared optical filters using GST-based micro resonator arrays. Optical Materials Express, 2022, 12, 1043.	3.0	7
2	Power-Dependent Investigation of Photo-Response from GeSn-Based p-i-n Photodetector Operating at High Power Density. Materials, 2022, 15, 989.	2.9	11
3	Generation of four-dimensional hyperentangled NOON states and beyond with photonic orbital angular momentum and detection-basis control. Physical Review A, 2022, 105, .	2.5	2
4	Independent measurement of phase and amplitude modulation in phase change material-based devices. Optical Materials Express, 2022, 12, 2899.	3.0	2
5	Room temperature emission spectroscopy of GeSn waveguides under optical pumping. AIP Advances, 2022, 12, .	1.3	2
6	Wavelength and power dependence on multilevel behavior of phase change materials. AIP Advances, 2021, 11, 085327.	1.3	3
7	Bio-inspired spatially variant photonic crystals for self-collimation and beam-steering applications in the near-infrared spectrum. Scientific Reports, 2021, 11, 18767.	3.3	1
8	Photonic Crystal for Beam Tuning Application. , 2020, , .		2
9	Polarization-selective modulation of supercavity resonances originating from bound states in the continuum. Communications Physics, 2020, 3, .	5.3	35
10	Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Applied Physics Letters, 2020, 116, .	3.3	16
11	Phase Change Dynamics and Two-Dimensional 4-Bit Memory in Ge ₂ Sb ₂ Te ₅ via Telecom-Band Encoding. ACS Photonics, 2020, 7, 480-487.	6.6	25
12	Polarization Dependence of Friedric-Wintgen Bound States in the Continuum from THz Metasurfaces. , 2020, , .		0
13	Pixel level demonstration of phase change material based spatial light modulation. , 2020, , .		Ο
14	Waveform-Agile Frequency Doubled Laser System for Optical Switching and Characterization of Phase Change Materials at Near-IR Wavelengths. , 2020, , .		0
15	A Review of Germanium-Antimony-Telluride Phase Change Materials for Non-Volatile Memories and Optical Modulators. Applied Sciences (Switzerland), 2019, 9, 530.	2.5	143
16	Eigenmode hybridization enables lattice-induced transparency in symmetric terahertz metasurfaces for slow light applications. Optics Letters, 2019, 44, 2705.	3.3	18
17	Optical and electrical properties of phase change materials for high-speed optoelectronics. , 2019, , .		0
18	Silicon-Based All-Optical Logic Gates and Memories for Low-Latency, High-Speed Cryptography. , 2018, , .		0

2

Imad Agha

#	Article	IF	CITATIONS
19	Thermally Tunable Far-Infrared Metasurfaces Enabled by Ge <inf>2</inf> Sb <inf>2</inf> Te <inf>5</inf> Phase-Change Material. , 2018, , .		0
20	Improving the performance of Ge2Sb2Te5 materials via nickel doping: Towards RF-compatible phase-change devices. Applied Physics Letters, 2018, 113, 171903.	3.3	34
21	Modulation of Electromagnetically Induced Transparency in Toriodal Resonance Terahertz Metasurfaces. , 2018, , .		Ο
22	All-optical switching via four-wave mixing Bragg scattering in a silicon platform. APL Photonics, 2017, 2, .	5.7	17
23	Unraveling delocalized electrons in metal induced gap states from second harmonics. Applied Physics Letters, 2017, 111, .	3.3	3
24	All-optical switch based on 4-wave mixing in Si waveguides. , 2017, , .		0
25	Polarization-dependent electromagnetic responses of ultrathin and highly flexible asymmetric terahertz metasurfaces. Optics Express, 2017, 25, 32540.	3.4	35
26	Non-destructive optical loss characterization using designed scattering features. , 2017, , .		2
27	Low-power optical logic gate in a silicon waveguide. , 2017, , .		4
28	Low control-power wavelength conversion on a silicon chip. Optics Letters, 2016, 41, 3651.	3.3	11
29	Theoertical investigation of quantum waveform shaping for single photon emitters. Optics Express, 2016, 24, 16687.	3.4	3
30	SU-8 nanoimprint fabrication of wire-grid polarizers using deep-UV interference lithography. Optics Letters, 2015, 40, 4396.	3.3	12
31	Spectral broadening and shaping of nanosecond pulses: toward shaping of single photons from quantum emitters. Optics Letters, 2014, 39, 5677.	3.3	13
32	A chip-scale, telecommunications-band frequency conversion interface for quantum emitters. Optics Express, 2013, 21, 21628.	3.4	31
33	Improving the performance of bright quantum dot single photon sources using temporal filtering via amplitude modulation. Scientific Reports, 2013, 3, 1397.	3.3	45
34	Nanophotonic Devices and Quantum Frequency Conversion. , 2013, , .		0
35	Erasing spectral distinguishability in quantum dot based single photon sources using quantum frequency conversion. , 2013, , .		0
36	Low-noise chip-based frequency conversion by four-wave-mixing Bragg scattering in SiN_x waveguides. Optics Letters, 2012, 37, 2997.	3.3	50

#	Article	IF	CITATIONS
37	Two-Photon Interference Using Background-Free Quantum Frequency Conversion of Single Photons Emitted by an InAs Quantum Dot. Physical Review Letters, 2012, 109, 147405.	7.8	113