Lijia Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10826230/publications.pdf

Version: 2024-02-01

516710 713466 22 706 16 21 h-index citations g-index papers 23 23 23 1075 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Organelle-targeting surface-enhanced Raman scattering (SERS) nanosensors for subcellular pH sensing. Nanoscale, 2018, 10, 1622-1630.	5.6	120
2	Mitochondria-targeting supra-carbon dots: Enhanced photothermal therapy selective to cancer cells and their hyperthermia molecular actions. Carbon, 2020, 156, 558-567.	10.3	65
3	Organelle-Targeting Gold Nanorods for Macromolecular Profiling of Subcellular Organelles and Enhanced Cancer Cell Killing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 7910-7918.	8.0	62
4	Photolysis of Staphyloxanthin in Methicillinâ€Resistant <i>Staphylococcus aureus</i> Potentiates Killing by Reactive Oxygen Species. Advanced Science, 2019, 6, 1900030.	11.2	59
5	Tracing the Therapeutic Process of Targeted Aptamer/Drug Conjugate on Cancer Cells by Surface-Enhanced Raman Scattering Spectroscopy. Analytical Chemistry, 2017, 89, 2844-2851.	6.5	58
6	In Situ Surface-Enhanced Raman Scattering Spectroscopy Exploring Molecular Changes of Drug-Treated Cancer Cell Nucleus. Analytical Chemistry, 2015, 87, 2504-2510.	6.5	57
7	Tracing sialoglycans on cell membrane via surface-enhanced Raman scattering spectroscopy with a phenylboronic acid-based nanosensor in molecular recognition. Biosensors and Bioelectronics, 2017, 94, 148-154.	10.1	37
8	Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA. Advanced Science, 2020, 7, 1903117.	11.2	34
9	Interference-free surface-enhanced Raman scattering nanosensor for imaging and dynamic monitoring of reactive oxygen species in mitochondria during photothermal therapy. Sensors and Actuators B: Chemical, 2019, 285, 84-91.	7.8	25
10	Note: Raman microspectroscopy integrated with fluorescence and dark field imaging. Review of Scientific Instruments, 2014, 85, 056109.	1.3	24
11	Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Talanta, 2018, 179, 200-206.	5.5	24
12	Investigating Dynamic Molecular Events in Melanoma Cell Nucleus During Photodynamic Therapy by SERS. Frontiers in Chemistry, 2018, 6, 665.	3.6	21
13	Exploring type II microcalcifications in benign and premalignant breast lesions by shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 132, 397-402.	3.9	20
14	Identification of breast cancer through spectroscopic analysis of cell-membrane sialic acid expression. Analytica Chimica Acta, 2018, 1033, 148-155.	5.4	19
15	Revealing Mitochondrial Microenvironmental Evolution Triggered by Photodynamic Therapy. Analytical Chemistry, 2020, 92, 6081-6087.	6.5	19
16	Distinguishing cancer cell lines at aÂsingle living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Mikrochimica Acta, 2019, 186, 367.	5.0	18
17	In situ, accurate, surface-enhanced Raman scattering detection of cancer cell nucleus with synchronous location by an alkyne-labeled biomolecular probe. Analytical and Bioanalytical Chemistry, 2018, 410, 585-594.	3.7	12
18	Tracing the molecular dynamics of living mitochondria under phototherapy <i>via</i> surface-enhanced Raman scattering spectroscopy. Analyst, The, 2019, 144, 5521-5527.	3.5	10

#	Article	IF	CITATION
19	Multi-functionalized Nano-conjugate for combating multidrug resistant breast Cancer via starvation-assisted chemotherapy. Materials Science and Engineering C, 2020, 116, 111127.	7.3	9
20	Ex situ and in situ surface-enhanced Raman spectroscopy for macromolecular profiles of cell nucleus. Analytical and Bioanalytical Chemistry, 2019, 411, 6021-6029.	3.7	7
21	In situ and ex situ surfaceâ€enhanced Raman spectroscopy (SERS) analysis of cell mitochondria. Journal of Raman Spectroscopy, 2020, 51, 602-610.	2.5	5
22	Antibiotic Resistance: Photoâ€Disassembly of Membrane Microdomains Revives Conventional Antibiotics against MRSA (Adv. Sci. 6/2020). Advanced Science, 2020, 7, 2070035.	11.2	0