Dae-Sung Kwon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10825346/publications.pdf

Version: 2024-02-01

1307594 1474206 16 325 9 7 citations g-index h-index papers 16 16 16 493 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Frequency Up-Conversion Hybrid Energy Harvester Combining Piezoelectric and Electromagnetic Transduction Mechanisms. International Journal of Precision Engineering and Manufacturing - Green Technology, 2022, 9, 241-251.	4.9	20
2	Self-suspended shell-based triboelectric nanogenerator for omnidirectional wind-energy harvesting. Nano Energy, 2022, 96, 107062.	16.0	23
3	Location-specific fabrication of suspended nanowires using electrospun fibers on designed microstructure. Nanotechnology, 2021, 32, 355602.	2.6	O
4	Self-Powered Wind Sensor Based on Triboelectric Generator with Curved Flap Array for Multi-Directional Wind Speed Detection. , 2020, , .		4
5	Flexible Energy Harvester with Piezoelectric and Thermoelectric Hybrid Mechanisms for Sustainable Harvesting. International Journal of Precision Engineering and Manufacturing - Green Technology, 2019, 6, 691-698.	4.9	45
6	Integration of a Carbon Nanotube Network on a Microelectromechanical Switch for Ultralong Contact Lifetime. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18617-18625.	8.0	11
7	Ultrasensitive Strain Sensor Based on Separation of Overlapped Carbon Nanotubes. Small, 2019, 15, e1805120.	10.0	144
8	Carbon nanotubes network contact lubrication for highly reliable MEMS switch. , 2017, , .		4
9	Piezoelectric and electromagnetic hybrid energy harvester using two cantilevers for frequency up-conversion., 2017,,.		11
10	Triboelectric energy harvester using frequency up-conversion to generate from extremely low frequency strain inputs. , $2017, \dots$		1
11	Fabrication of carbon nanotube-coated fabric for highly sensitive pressure sensor. , 2017, , .		6
12	Wind-powered triboelectric energy harvester using curved flapping film array. , 2017, , .		2
13	Piezoelectric energy harvester converting strain energy into kinetic energy for extremely low frequency operation. Applied Physics Letters, 2014, 104, .	3.3	33
14	Acid-sensitive pH sensor using electrolysis and a microfluidic channel for read-out amplification. RSC Advances, 2014, 4, 39634.	3 . 6	3
15	Highly sensitive cantilever type chemo-mechanical hydrogen sensor based on contact resistance of self-adjusted carbon nanotube arrays. Sensors and Actuators B: Chemical, 2014, 197, 414-421.	7.8	5
16	Using Confined Self-Adjusting Carbon Nanotube Arrays as High-Sensitivity Displacement Sensing Element. ACS Applied Materials & Samp; Interfaces, 2014, 6, 10181-10187.	8.0	13