
Stephen M Fuchs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082441/publications.pdf Version: 2024-02-01

STEDHEN M FUCHS

#	Article	IF	CITATIONS
1	Defining the role of the polyasparagine repeat domain of the S. cerevisiae transcription factor Azf1p. PLoS ONE, 2021, 16, e0247285.	2.5	3
2	Contractions of the C-Terminal Domain of Saccharomyces cerevisiae Rpb1p Are Mediated by Rad5p. G3: Genes, Genomes, Genetics, 2020, 10, 2543-2551.	1.8	0
3	The Epithelial adhesin 1 tandem repeat region mediates protein display through multiple mechanisms. FEMS Yeast Research, 2020, 20, .	2.3	2
4	Microfluidic quantification and separation of yeast based on surface adhesion. Lab on A Chip, 2019, 19, 3481-3489.	6.0	7
5	Distinct roles for S. cerevisiae H2A copies in recombination and repeat stability, with a role for H2A.1 threonine 126. ELife, 2019, 8, .	6.0	8
6	Variable Surface Display and Postâ€Translational Regulation of the Fungal Adhesin Epa1p. FASEB Journal, 2019, 33, 655.7.	0.5	0
7	Repeat-Specific Functions for the C-Terminal Domain of RNA Polymerase II in Budding Yeast. G3: Genes, Genomes, Genetics, 2018, 8, 1593-1601.	1.8	9
8	Density separation of quiescent yeast using iodixanol. BioTechniques, 2017, 63, 169-173.	1.8	7
9	Genetic and environmental factors that regulate tandem repeat variation in coding regions. FASEB Journal, 2017, 31, .	0.5	0
10	DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain. Journal of Biological Chemistry, 2016, 291, 11540-11550.	3.4	11
11	Comprehensive RNA Polymerase II Interactomes Reveal Distinct and Varied Roles for Each Phospho-CTD Residue. Cell Reports, 2016, 15, 2147-2158.	6.4	113
12	An Interactive Database for the Assessment of Histone Antibody Specificity. Molecular Cell, 2015, 59, 502-511.	9.7	139
13	Peptide Microarrays to Examine RNA Polymerase II Binding Protein Domains. FASEB Journal, 2015, 29, 877.12.	0.5	0
14	Examining changes to chromatin during chronological aging in budding yeast. FASEB Journal, 2015, 29, 877.13.	0.5	0
15	Heterochromatin-associated interactions of <i>Drosophila</i> HP1a with dADD1, HIPP1, and repetitive RNAs. Genes and Development, 2014, 28, 1445-1460.	5.9	82
16	Budding yeast as a model to study epigenetics. Drug Discovery Today: Disease Models, 2014, 12, 1-6.	1.2	10
17	Deciphering postâ€ŧranslational modification codes. FEBS Letters, 2013, 587, 1247-1257.	2.8	142
18	Chemically Modified Tandem Repeats in Proteins: Natural Combinatorial Peptide Libraries. ACS Chemical Biology, 2013, 8, 275-282.	3.4	5

STEPHEN M FUCHS

#	Article	IF	CITATIONS
19	Understanding the combinatorial postâ€translational modifications associated with histone H3 methylation in yeast. FASEB Journal, 2013, 27, 772.6.	0.5	0
20	Peptide Microarrays to Interrogate the "Histone Code― Methods in Enzymology, 2012, 512, 107-135.	1.0	64
21	Broad Ranges of Affinity and Specificity of Anti-Histone Antibodies Revealed by a Quantitative Peptide Immunoprecipitation Assay. Journal of Molecular Biology, 2012, 424, 391-399.	4.2	67
22	Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nature Structural and Molecular Biology, 2012, 19, 1155-1160.	8.2	313
23	RNA Polymerase II Carboxyl-terminal Domain Phosphorylation Regulates Protein Stability of the Set2 Methyltransferase and Histone H3 Di- and Trimethylation at Lysine 36. Journal of Biological Chemistry, 2012, 287, 3249-3256.	3.4	50
24	Antibody recognition of histone post-translational modifications: emerging issues and future prospects. Epigenomics, 2011, 3, 247-249.	2.1	41
25	Influence of Combinatorial Histone Modifications on Antibody and Effector Protein Recognition. Current Biology, 2011, 21, 53-58.	3.9	161
26	The Ccr4-Not Complex Interacts with the mRNA Export Machinery. PLoS ONE, 2011, 6, e18302.	2.5	46
27	Protein modifications in transcription elongation. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 26-36.	1.9	59
28	Roles for Ctk1 and Spt6 in Regulating the Different Methylation States of Histone H3 Lysine 36. Molecular and Cellular Biology, 2008, 28, 4915-4926.	2.3	140
29	Increasing the potency of a cytotoxin with an arginine graft. Protein Engineering, Design and Selection, 2007, 20, 505-9.	2.1	32
30	H2B ubiquitylation in transcriptional control: a FACT-finding mission. Genes and Development, 2007, 21, 737-743.	5.9	57
31	Arginine Grafting to Endow Cell Permeability. ACS Chemical Biology, 2007, 2, 167-170.	3.4	75
32	Multilayered Films Fabricated from an Oligoarginine-Conjugated ProteinÂPromoteÂEfficientÂSurface-MediatedÀProteinÂTransduction. Biomacromolecules, 2007, 8, 857-863.	5.4	30
33	Polyarginine as a multifunctional fusion tag. Protein Science, 2005, 14, 1538-1544.	7.6	103
34	Pathway for Polyarginine Entry into Mammalian Cellsâ€. Biochemistry, 2004, 43, 2438-2444.	2.5	347
35	Creation of a zymogen. Nature Structural Biology, 2003, 10, 115-119.	9.7	43
36	Identification of the Veratryl Alcohol Binding Site in Lignin Peroxidase by Site-Directed Mutagenesis. Biochemical and Biophysical Research Communications, 1998, 251, 283-286.	2.1	34