List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082404/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Self-Assembled TiO ₂ –Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion. ACS Nano, 2009, 3, 907-914.	14.6	1,596
2	Nitrogenâ€Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of Highâ€Arealâ€Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2014, 24, 1243-1250.	14.9	904
3	Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review. Journal of Power Sources, 2009, 192, 588-598.	7.8	804
4	Ternary Self-Assembly of Ordered Metal Oxideâ^'Graphene Nanocomposites for Electrochemical Energy Storage. ACS Nano, 2010, 4, 1587-1595.	14.6	795
5	Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogenâ€Doped Carbon Composites For Highâ€Performance Lithium–Sulfur Battery Cathodes. Angewandte Chemie - International Edition, 2015, 54, 4325-4329.	13.8	686
6	Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications, 2009, 11, 954-957.	4.7	615
7	Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions. Nature Materials, 2019, 18, 384-389.	27.5	587
8	Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: A review. Bioresource Technology, 2016, 199, 21-33.	9.6	578
9	Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries. Nano Letters, 2016, 16, 864-870.	9.1	531
10	Interpenetrated Gel Polymer Binder for Highâ€Performance Silicon Anodes in Lithiumâ€ion Batteries. Advanced Functional Materials, 2014, 24, 5904-5910.	14.9	459
11	Chemically Bonded Phosphorus/Graphene Hybrid as a High Performance Anode for Sodium-Ion Batteries. Nano Letters, 2014, 14, 6329-6335.	9.1	434
12	Polymer–Graphene Nanocomposites as Ultrafast-Charge and -Discharge Cathodes for Rechargeable Lithium Batteries. Nano Letters, 2012, 12, 2205-2211.	9.1	432
13	Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta, 2009, 80, 403-406.	5.5	416
14	Microâ€sized Si Composite with Interconnected Nanoscale Building Blocks as Highâ€Performance Anodes for Practical Application in Lithiumâ€ion Batteries. Advanced Energy Materials, 2013, 3, 295-300.	19.5	412
15	Stabilization of Electrocatalytic Metal Nanoparticles at Metalâ^'Metal Oxideâ^'Graphene Triple Junction Points. Journal of the American Chemical Society, 2011, 133, 2541-2547.	13.7	391
16	Oriented Nanostructures for Energy Conversion and Storage. ChemSusChem, 2008, 1, 676-697.	6.8	367
17	LiMnPO ₄ Nanoplate Grown via Solid-State Reaction in Molten Hydrocarbon for Li-Ion Battery Cathode. Nano Letters, 2010, 10, 2799-2805.	9.1	354
18	Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nature Energy, 2018, 3, 1076-1083.	39.5	338

#	Article	IF	CITATIONS
19	Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage. Angewandte Chemie - International Edition, 2015, 54, 13947-13951.	13.8	333
20	Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. Journal of Power Sources, 2010, 195, 3720-3729.	7.8	313
21	Optimization of Air Electrode for Li/Air Batteries. Journal of the Electrochemical Society, 2010, 157, A487.	2.9	308
22	Low-temperature and high-rate-charging lithium metal batteries enabled by an electrochemically active monolayer-regulated interface. Nature Energy, 2020, 5, 534-542.	39.5	280
23	Advanced Sodium Ion Battery Anode Constructed <i>via</i> Chemical Bonding between Phosphorus, Carbon Nanotube, and Cross-Linked Polymer Binder. ACS Nano, 2015, 9, 11933-11941.	14.6	255
24	Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries. Journal of the American Chemical Society, 2017, 139, 15288-15291.	13.7	255
25	Synthesis and Li-Ion Insertion Properties of Highly Crystalline Mesoporous Rutile TiO ₂ . Chemistry of Materials, 2008, 20, 3435-3442.	6.7	254
26	Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries. Nature Communications, 2017, 8, 850.	12.8	240
27	Asymmetric Temperature Modulation for Extreme Fast Charging of Lithium-Ion Batteries. Joule, 2019, 3, 3002-3019.	24.0	234
28	Mesoporous Carbon–Carbon Nanotube–Sulfur Composite Microspheres for High-Areal-Capacity Lithium–Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2013, 5, 11355-11362.	8.0	230
29	Phosphorusâ€Graphene Nanosheet Hybrids as Lithiumâ€ŀon Anode with Exceptional Highâ€Temperature Cycling Stability. Advanced Science, 2015, 2, 1400020.	11.2	214
30	Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nature Communications, 2014, 5, 3605.	12.8	212
31	Highâ€Performance Hybrid Supercapacitor Enabled by a Highâ€Rate Siâ€based Anode. Advanced Functional Materials, 2014, 24, 7433-7439.	14.9	208
32	Silicon core–hollow carbon shell nanocomposites with tunable buffer voids for high capacity anodes of lithium-ion batteries. Physical Chemistry Chemical Physics, 2012, 14, 12741.	2.8	196
33	Influence of Silicon Nanoscale Building Blocks Size and Carbon Coating on the Performance of Microâ€Sized Si–C Composite Liâ€Ion Anodes. Advanced Energy Materials, 2013, 3, 1507-1515.	19.5	169
34	Formation of SnS nanoflowers for lithium ion batteries. Chemical Communications, 2012, 48, 5608.	4.1	167
35	Micro-sized silicon–carbon composites composed of carbon-coated sub-10 nm Si primary particles as high-performance anode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 1257-1262.	10.3	165
36	Exceptionally High Ionic Conductivity in Na ₃ P _{0.62} As _{0.38} S ₄ with Improved Moisture Stability for Solidâ€State Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605561.	21.0	164

#	Article	IF	CITATIONS
37	Bis(2,2,2-trifluoroethyl) Ether As an Electrolyte Co-solvent for Mitigating Self-Discharge in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2014, 6, 8006-8010.	8.0	161
38	Effects of Biomass Feedstocks and Gasification Conditions on the Physiochemical Properties of Char. Energies, 2013, 6, 3972-3986.	3.1	157
39	Dual conductive network-enabled graphene/Si–C composite anode with high areal capacity for lithium-ion batteries. Nano Energy, 2014, 6, 211-218.	16.0	155
40	High Capacity MoO ₂ /Graphite Oxide Composite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 309-314.	4.6	151
41	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2016, 55, 4231-4235.	13.8	149
42	Self-Formed Hybrid Interphase Layer on Lithium Metal for High-Performance Lithium–Sulfur Batteries. ACS Nano, 2018, 12, 1500-1507.	14.6	149
43	Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage. Electrochemistry Communications, 2010, 12, 378-381.	4.7	145
44	GeO _{<i>x</i>} /Reduced Graphene Oxide Composite as an Anode for Liâ€lon Batteries: Enhanced Capacity via Reversible Utilization of Li ₂ O along with Improved Rate Performance. Advanced Functional Materials, 2014, 24, 1059-1066.	14.9	143
45	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li ₁₀ GeP ₂ S ₁₂ Solid Electrolyte Interface. Angewandte Chemie - International Edition, 2018, 57, 13608-13612.	13.8	138
46	Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery. Nature Communications, 2021, 12, 3031.	12.8	138
47	Acid-Functionalized Magnetic Nanoparticle as Heterogeneous Catalysts for Biodiesel Synthesis. Journal of Physical Chemistry C, 2015, 119, 26020-26028.	3.1	130
48	Electrodeposition of Metallic Nanowire Thin Films Using Mesoporous Silica Templates. Advanced Materials, 2003, 15, 130-133.	21.0	129
49	A General Route to Macroscopic Hierarchical 3D Nanowire Networks. Angewandte Chemie - International Edition, 2004, 43, 6169-6173.	13.8	123
50	Understanding the Effect of a Fluorinated Ether on the Performance of Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2015, 7, 9169-9177.	8.0	121
51	Amorphous Zn2GeO4 nanoparticles as anodes with high reversible capacity and long cycling life for Li-ion batteries. Nano Energy, 2013, 2, 498-504.	16.0	120
52	General Method of Manipulating Formation, Composition, and Morphology of Solid-Electrolyte Interphases for Stable Li-Alloy Anodes. Journal of the American Chemical Society, 2017, 139, 17359-17367.	13.7	112
53	Stable Li Metal Anode by a Hybrid Lithium Polysulfidophosphate/Polymer Cross-Linking Film. ACS Energy Letters, 2019, 4, 1271-1278.	17.4	107
54	Stable Li metal anode by a polyvinyl alcohol protection layer via modifying solid-electrolyte interphase layer. Nano Energy, 2019, 64, 103893.	16.0	106

#	Article	IF	CITATIONS
55	Pyrolysis of Torrefied Biomass. Trends in Biotechnology, 2018, 36, 1287-1298.	9.3	100
56	Mechanism of Enhanced Carbon Cathode Performance by Nitrogen Doping in Lithium–Sulfur Battery: An X-ray Absorption Spectroscopic Study. Journal of Physical Chemistry C, 2014, 118, 7765-7771.	3.1	99
57	Advanced anode for sodium-ion battery with promising long cycling stability achieved by tuning phosphorus-carbon nanostructures. Nano Energy, 2017, 40, 550-558.	16.0	99
58	Soy protein adhesion enhanced by glutaraldehyde crosslink. Journal of Applied Polymer Science, 2007, 104, 130-136.	2.6	98
59	Facile synthesis of graphene–silicon nanocomposites with an advanced binder for high-performance lithium-ion battery anodes. Solid State Ionics, 2014, 254, 65-71.	2.7	89
60	A soft–hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. Journal of Materials Chemistry B, 2015, 3, 6480-6489.	5.8	89
61	Exceptional electrochemical performance of rechargeable Li–S batteries with a polysulfide-containing electrolyte. RSC Advances, 2013, 3, 3540.	3.6	87
62	Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 8623-8627.	10.3	87
63	Porous Spherical Carbon/Sulfur Nanocomposites by Aerosol-Assisted Synthesis: The Effect of Pore Structure and Morphology on Their Electrochemical Performance As Lithium/Sulfur Battery Cathodes. ACS Applied Materials & Interfaces, 2014, 6, 7596-7606.	8.0	84
64	Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent. Journal of the Electrochemical Society, 2015, 162, A64-A68.	2.9	83
65	High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy, 2017, 31, 418-423.	16.0	83
66	A new approach to both high safety and high performance of lithium-ion batteries. Science Advances, 2020, 6, eaay7633.	10.3	83
67	Low-Temperature Synthesis of Tunable Mesoporous Crystalline Transition Metal Oxides and Applications as Au Catalyst Supports. Journal of Physical Chemistry C, 2008, 112, 13499-13509.	3.1	81
68	A Scientific Study of Current Collectors for Mg Batteries in Mg(AlCl ₂ EtBu) ₂ /THF Electrolyte. Journal of the Electrochemical Society, 2013, 160, A351-A355.	2.9	80
69	Supremely elastic gel polymer electrolyte enables a reliable electrode structure for silicon-based anodes. Nature Communications, 2019, 10, 5586.	12.8	80
70	Titanium nitride coating to enhance the performance of silicon nanoparticles as a lithium-ion battery anode. Journal of Materials Chemistry A, 2014, 2, 10375-10378.	10.3	79
71	Porous spherical polyacrylonitrile-carbon nanocomposite with high loading of sulfur for lithium–sulfur batteries. Journal of Power Sources, 2016, 302, 70-78.	7.8	77
72	Electrokinetic Phenomena Enhanced Lithiumâ€lon Transport in Leaky Film for Stable Lithium Metal Anodes. Advanced Energy Materials, 2019, 9, 1900704.	19.5	76

#	Article	IF	CITATIONS
73	Surface-Mediated Growth of Transparent, Oriented, and Well-Defined Nanocrystalline Anatase Titania Films. Journal of the American Chemical Society, 2006, 128, 13670-13671.	13.7	75
74	Self-Templated Synthesis of Mesoporous Carbon from Carbon Tetrachloride Precursor for Supercapacitor Electrodes. ACS Applied Materials & amp; Interfaces, 2016, 8, 6779-6783.	8.0	75
75	Scalable process for application of stabilized lithium metal powder inÂLi-ion batteries. Journal of Power Sources, 2016, 309, 33-41.	7.8	74
76	Facile synthesis of hierarchical MoS ₂ –carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	10.3	73
77	Improved rate capability of Si–C composite anodes by boron doping for lithium-ion batteries. Electrochemistry Communications, 2013, 36, 29-32.	4.7	71
78	Isoelectric pH of polyamide–epichlorohydrin modified soy protein improved water resistance and adhesion properties. Journal of Applied Polymer Science, 2007, 103, 2261-2270.	2.6	70
79	Silica-Templated Continuous Mesoporous Carbon Films by a Spin-Coating Technique. Advanced Materials, 2004, 16, 884-886.	21.0	69
80	Effects of the pelleting conditions on chemical composition and sugar yield of corn stover, big bluestem, wheat straw, and sorghum stalk pellets. Bioprocess and Biosystems Engineering, 2012, 35, 615-623.	3.4	69
81	Metal and Semiconductor Nanowire Network Thin Films with Hierarchical Pore Structures. Chemistry of Materials, 2006, 18, 4231-4237.	6.7	67
82	A Fluorinated Ether Electrolyte Enabled High Performance Prelithiated Graphite/Sulfur Batteries. ACS Applied Materials & Interfaces, 2017, 9, 6959-6966.	8.0	65
83	Enhanced performance of SiO/Fe2O3 composite as an anode for rechargeable Li-ion batteries. Electrochemistry Communications, 2013, 28, 79-82.	4.7	64
84	Magnetic Cobalt Nanowire Thin Films. Journal of Physical Chemistry B, 2005, 109, 1919-1922.	2.6	63
85	Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol. Bioresource Technology, 2020, 309, 123383.	9.6	63
86	Self-assembled materials for catalysis. Nano Research, 2009, 2, 1-29.	10.4	61
87	Lithium-ion batteries for stationary energy storage. Jom, 2010, 62, 24-30.	1.9	59
88	Interfacially Controlled Synthesis of Hollow Mesoporous Silica Spheres with Radially Oriented Pore Structures. Langmuir, 2010, 26, 12267-12272.	3.5	58
89	Solvothermal synthesis of V2O5/graphene nanocomposites for high performance lithium ion batteries. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2014, 185, 7-12.	3.5	58
90	Hierachical mesoporous silica wires by confined assembly. Chemical Communications, 2005, , 166.	4.1	56

#	Article	IF	CITATIONS
91	A quaternary sodium superionic conductor - Na10.8Sn1.9PS11.8. Nano Energy, 2018, 47, 325-330.	16.0	55
92	Thermal properties and adhesion strength of modified soybean storage proteins. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 395-400.	1.9	52
93	A facile route for rapid synthesis of hollow mesoporous silica nanoparticles as pH-responsive delivery carrier. Journal of Colloid and Interface Science, 2015, 451, 101-107.	9.4	52
94	Minimized Volume Expansion in Hierarchical Porous Silicon upon Lithiation. ACS Applied Materials & Interfaces, 2019, 11, 13257-13263.	8.0	51
95	Evaluation of Waxy Grain Sorghum for Ethanol Production. Cereal Chemistry, 2011, 88, 589-595.	2.2	50
96	Physicochemical Properties and Adhesion Performance of Canola Protein Modified with Sodium Bisulfite. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 897-908.	1.9	50
97	Adhesive Performance of Sorghum Protein Extracted from Sorghum DDGS and Flour. Journal of Polymers and the Environment, 2011, 19, 755-765.	5.0	49
98	Amorphous Si/SiOx/SiO2 nanocomposites via facile scalable synthesis as anode materials for Li-ion batteries with long cycling life. RSC Advances, 2012, 2, 12710.	3.6	47
99	Semimicro-size agglomerate structured silicon-carbon composite as an anode material for high performance lithium-ion batteries. Journal of Power Sources, 2016, 334, 128-136.	7.8	47
100	Origin of Outstanding Phase and Moisture Stability in a Na ₃ P _{1–<i>x</i>} As _{<i>x</i>} S ₄ Superionic Conductor. ACS Applied Materials & Interfaces, 2017, 9, 16261-16269.	8.0	46
101	Toward Better Lithium–Sulfur Batteries: Functional Non-aqueous Liquid Electrolytes. Electrochemical Energy Reviews, 2018, 1, 388-402.	25.5	46
102	Wet Strength and Water Resistance of Modified Soy Protein Adhesives and Effects of Drying Treatment. Journal of Polymers and the Environment, 2003, 11, 137-144.	5.0	45
103	Sulfuric acid pretreatment and enzymatic hydrolysis of photoperiod sensitive sorghum for ethanol production. Bioprocess and Biosystems Engineering, 2011, 34, 485-492.	3.4	45
104	Bio-Based Wood Adhesive from Camelina Protein (a Biodiesel Residue) and Depolymerized Lignin with Improved Water Resistance. ACS Omega, 2017, 2, 7996-8004.	3.5	45
105	Superior Performance of a Lithium–Sulfur Battery Enabled by a Dimethyl Trisulfide Containing Electrolyte. Small Methods, 2018, 2, 1800038.	8.6	44
106	Relationships between cellulosic biomass particle size and enzymatic hydrolysis sugar yield: Analysis of inconsistent reports in the literature. Renewable Energy, 2013, 60, 127-136.	8.9	43
107	Synthesis and understanding of Na11Sn2PSe12 with enhanced ionic conductivity for all-solid-state Na-ion battery. Energy Storage Materials, 2019, 17, 70-77.	18.0	42
108	Organosulfideâ€Based Deep Eutectic Electrolyte for Lithium Batteries. Angewandte Chemie - International Edition, 2021, 60, 9881-9885.	13.8	42

#	Article	IF	CITATIONS
109	Hempseed as a nutritious and healthy human food or animal feed source: a review. International Journal of Food Science and Technology, 2021, 56, 530-543.	2.7	41
110	Ti-substituted Li[Li _{0.26} Mn _{0.6â^'x} Ti _x Ni _{0.07} Co _{0.07}]O _{2< cathode material with improved structural stability and suppressed voltage fading. Journal of Materials Chemistry A, 2015, 3, 17376-17384.}	/sub>layer 10.3	ed 40
111	Atomic-Scale Mechanisms of Enhanced Electrochemical Properties of Mo-Doped Co-Free Layered Oxide Cathodes for Lithium-Ion Batteries. ACS Energy Letters, 2019, 4, 2540-2546.	17.4	40
112	Integrating Si nanoscale building blocks into micro-sized materials to enable practical applications in lithium-ion batteries. Nanoscale, 2016, 8, 1834-1848.	5.6	38
113	Integrated bioethanol production to boost low-concentrated cellulosic ethanol without sacrificing ethanol yield. Bioresource Technology, 2018, 250, 299-305.	9.6	38
114	Confining Sulfur in Porous Carbon by Vapor Deposition to Achieve High-Performance Cathode for All-Solid-State Lithium–Sulfur Batteries. ACS Energy Letters, 2021, 6, 413-418.	17.4	37
115	Templated Synthesis, Characterization, and Sensing Application of Macroscopic Platinum Nanowire Network Electrodes. Journal of Nanoscience and Nanotechnology, 2005, 5, 1904-1909.	0.9	36
116	Stable Hydrophobic Ionic Liquid Gel Electrolyte for Stretchable Fiberâ€&haped Dyeâ€&ensitized Solar Cell. ChemNanoMat, 2015, 1, 399-402.	2.8	36
117	Physicochemical Properties of Soy Protein Adhesives Obtained by In Situ Sodium Bisulfite Modification During Acid Precipitation. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 301-312.	1.9	35
118	Effect of ozone treatment on physicochemical properties of waxy rice flour and waxy rice starch. International Journal of Food Science and Technology, 2015, 50, 744-749.	2.7	35
119	Functional Organosulfide Electrolyte Promotes an Alternate Reaction Pathway to Achieve High Performance in Lithium–Sulfur Batteries. Angewandte Chemie, 2016, 128, 4303-4307.	2.0	35
120	Rapid determination of total phenolic content of whole wheat flour using near-infrared spectroscopy and chemometrics. Food Chemistry, 2021, 344, 128633.	8.2	34
121	Effects of glycerol and nanoclay on physiochemical properties of camelina gum-based films. Carbohydrate Polymers, 2016, 152, 747-754.	10.2	33
122	A Superior Carbonate Electrolyte for Stable Cycling Li Metal Batteries Using High Ni Cathode. ACS Energy Letters, 2022, 7, 2282-2288.	17.4	32
123	Copolymers from epoxidized soybean oil and lactic acid oligomers for pressure-sensitive adhesives. RSC Advances, 2015, 5, 27256-27265.	3.6	31
124	Aerosol-Assisted Formation of Mesostructured Thin Films. Advanced Materials, 2003, 15, 1733-1736.	21.0	30
125	Self-Assembly of Mesostructured Conjugated Poly(2,5-thienylene ethynylene)/Silica Nanocomposites. Advanced Materials, 2003, 15, 1266-1269.	21.0	29
126	Integrating bran starch hydrolysates with alkaline pretreated soft wheat bran to boost sugar concentration. Bioresource Technology, 2020, 302, 122826.	9.6	28

#	Article	IF	CITATIONS
127	Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading. Renewable Energy, 2016, 96, 832-842.	8.9	26
128	On the denaturation of enzymes in the process of foam fractionation. Bioseparation, 1998, 7, 167-174.	0.7	25
129	Ultrasonic vibration-assisted pelleting of wheat straw: A predictive model for energy consumption using response surface methodology. Ultrasonics, 2014, 54, 305-311.	3.9	25
130	The combination of intercalation and conversion reactions to improve the volumetric capacity of the cathode in Li–S batteries. Journal of Materials Chemistry A, 2019, 7, 3618-3623.	10.3	25
131	Impacts of Kafirin Allelic Diversity, Starch Content, and Protein Digestibility on Ethanol Conversion Efficiency in Grain Sorghum. Cereal Chemistry, 2014, 91, 218-227.	2.2	24
132	Rational design and synthesis of 3D MoS2 hierarchitecture with tunable nanosheets and 2H/1T phase within graphene for superior lithium storage. Electrochimica Acta, 2016, 211, 1048-1055.	5.2	24
133	Development of Highâ€Strength Soy Protein Adhesives Modified with Sodium Montmorillonite Clay. JAOCS, Journal of the American Oil Chemists' Society, 2016, 93, 1509-1517.	1.9	24
134	High-solid pretreatment of corn stover using urea for enzymatic saccharification. Bioresource Technology, 2018, 259, 83-90.	9.6	24
135	Hidden Subsurface Reconstruction and Its Atomic Origins in Layered Oxide Cathodes. Nano Letters, 2020, 20, 2756-2762.	9.1	24
136	Sorghum Protein Extraction by Sonication and Its Relationship to Ethanol Fermentation. Cereal Chemistry, 2008, 85, 837-842.	2.2	23
137	Assessing Fermentation Quality of Grain Sorghum for Fuel Ethanol Production Using Rapid Viscoâ€Analyzer. Cereal Chemistry, 2008, 85, 830-836.	2.2	23
138	Ethanolâ€Production Performance of Ozoneâ€Treated Tannin Grain Sorghum Flour. Cereal Chemistry, 2012, 89, 30-37.	2.2	23
139	Adhesion and Physicochemical Properties of Soy Protein Modified by Sodium Bisulfite. JAOCS, Journal of the American Oil Chemists' Society, 2013, 90, 1917-1926.	1.9	23
140	Carbon dioxide hydrogenation to aromatic hydrocarbons by using an iron/iron oxide nanocatalyst. Beilstein Journal of Nanotechnology, 2014, 5, 760-769.	2.8	23
141	Roomâ€Temperature Synthesis of Mesoporous Sn/SnO ₂ Composite as Anode for Sodiumâ€ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 1950-1954.	2.0	23
142	High Ethanol Concentration (77 g/L) of Industrial Hemp Biomass Achieved Through Optimizing the Relationship between Ethanol Yield/Concentration and Solid Loading. ACS Omega, 2020, 5, 21913-21921.	3.5	23
143	A comprehensive review of wheat phytochemicals: From farm to fork and beyond. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2274-2308.	11.7	23
144	Probing Porosity and Pore Interconnectivity in Self-Assembled TiO ₂ –Graphene Hybrid Nanostructures Using Hyperpolarized ¹²⁹ Xe NMR. Journal of Physical Chemistry C, 2012, 116, 22-29.	3.1	22

#	Article	IF	CITATIONS
145	Rapid Determination of Both Structural Polysaccharides and Soluble Sugars in Sorghum Biomass Using Near-Infrared Spectroscopy. Bioenergy Research, 2015, 8, 130-136.	3.9	22
146	Nanomaterials for Energy Conversion and Storage. ChemNanoMat, 2016, 2, 560-561.	2.8	22
147	Preparation of Micrometer- to Sub-micrometer-Sized Nanostructured Silica Particles Using High-Energy Ball Milling. Journal of the American Ceramic Society, 2004, 87, 1280-1286.	3.8	21
148	Crystal and electronic structure of lithiated nanosized rutile TiO2 by electron diffraction and electron energy-loss spectroscopy. Applied Physics Letters, 2009, 94, .	3.3	21
149	Rapid determination of sugar content in corn stover hydrolysates using near infrared spectroscopy. Bioresource Technology, 2013, 147, 293-298.	9.6	21
150	Investigation on characteristics of corn stover and sorghum stalk processed by ultrasonic vibration-assisted pelleting. Renewable Energy, 2017, 101, 1075-1086.	8.9	21
151	Seed yield and oil quality as affected by Camelina cultivar and planting date. Journal of Crop Improvement, 2019, 33, 202-222.	1.7	21
152	A sandwich-type sulfur cathode based on multifunctional ceria hollow spheres for high-performance lithium–sulfur batteries. Materials Chemistry Frontiers, 2019, 3, 1317-1322.	5.9	21
153	Quantitative assessment of wheat quality using nearâ€infrared spectroscopy: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2956-3009.	11.7	21
154	Effects of ultrasonic vibration-assisted pelleting on chemical composition and sugar yield of corn stover and sorghum stalk. Renewable Energy, 2015, 76, 160-166.	8.9	20
155	Bottom-up synthesis of mesoporous carbon/silicon carbide composite at low temperature for supercapacitor electrodes. Materials Letters, 2017, 198, 140-143.	2.6	20
156	Long-term Biomass and Potential Ethanol Yields of Annual and Perennial Biofuel Crops. Agronomy Journal, 2019, 111, 74-83.	1.8	20
157	The Effect of Gasification Conditions on the Surface Properties of Biochar Produced in a Top-Lit Updraft Gasifier. Applied Sciences (Switzerland), 2020, 10, 688.	2.5	20
158	Online state estimation for a physics-based Lithium-Sulfur battery model. Journal of Power Sources, 2021, 489, 229495.	7.8	20
159	Probing Porosity and Pore Interconnectivity in Crystalline Mesoporous TiO ₂ Using Hyperpolarized ¹²⁹ Xe NMR. Journal of Physical Chemistry C, 2009, 113, 6577-6583.	3.1	19
160	Impact of Deficit Irrigation on Maize Physical and Chemical Properties and Ethanol Yield. Cereal Chemistry, 2013, 90, 453-462.	2.2	19
161	Reconstructing ZnO quantum dot assembled tubular structures from nanotubes within graphene matrix via ongoing pulverization towards high-performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 19123-19131.	10.3	18
162	Antioxidative Properties and Interconversion of <i>tert</i> Butylhydroquinone and <i>tert</i> Butylquinone in Soybean Oils. Journal of Agricultural and Food Chemistry, 2017, 65, 10598-10603.	5.2	18

#	Article	IF	CITATIONS
163	Technoeconomic Analysis of Multiple-Stream Ethanol and Lignin Production from Lignocellulosic Biomass: Insights into the Chemical Selection and Process Integration. ACS Sustainable Chemistry and Engineering, 2021, 9, 13640-13652.	6.7	18
164	An integrated deep eutectic solvent-ionic liquid-metal catalyst system for lignin and 5-hydroxymethylfurfural production from lignocellulosic biomass: Technoeconomic analysis. Bioresource Technology, 2022, 356, 127277.	9.6	18
165	A study of a fluorine substituted phenyl based complex as a 3 V electrolyte for Mg batteries. Journal of Materials Chemistry A, 2014, 2, 15488-15494.	10.3	17
166	Stable metal anodes enabled by a labile organic molecule bonded to a reduced graphene oxide aerogel. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30135-30141.	7.1	17
167	Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 2023, 39, 3620-3634.	8.4	17
168	Effects of preheating treatment on thermal property and adhesion performance of soy protein isolates. Journal of Adhesion Science and Technology, 2007, 21, 1469-1481.	2.6	16
169	Vapor-induced solid–liquid–solid process for silicon-based nanowire growth. Journal of Power Sources, 2010, 195, 1691-1697.	7.8	16
170	Epoxidized and Acrylated Epoxidized Camelina Oils for Ultraviolet urable Wood Coatings. JAOCS, Journal of the American Oil Chemists' Society, 2018, 95, 1307-1318.	1.9	16
171	Minimizing water consumption for sugar and lignin recovery via the integration of acid and alkali pretreated biomass and their mixed filtrate without post-washing. Bioresource Technology, 2021, 337, 125389.	9.6	16
172	Effects of cutting orientation in poplar wood biomass size reduction on enzymatic hydrolysis sugar yield. Bioresource Technology, 2015, 194, 407-410.	9.6	15
173	Ultrasonic vibration-assisted pelleting of cellulosic biomass for ethanol manufacturing: An investigation on pelleting temperature. Renewable Energy, 2016, 86, 895-908.	8.9	15
174	Polyanthraquinone/CNT nanocomposites as cathodes for rechargeable lithium ion batteries. Materials Letters, 2018, 214, 107-110.	2.6	15
175	Optimization of Microwave Coupled Hot Air Drying for Chinese Yam Using Response Surface Methodology. Processes, 2019, 7, 745.	2.8	15
176	Effect of ultrasonic vibration-assisted pelleting of biomass on biochar properties. Journal of Cleaner Production, 2021, 279, 123900.	9.3	15
177	Comprehensive Evaluation and Comparison of Machine Learning Methods in QSAR Modeling of Antioxidant Tripeptides. ACS Omega, 2022, 7, 25760-25771.	3.5	15
178	Effects of Sodium Bisulfite on the Physicochemical and Adhesion Properties of Canola Protein Fractions. Journal of Polymers and the Environment, 2012, 20, 905-915.	5.0	14
179	Effects of post-washing on pretreated biomass and hydrolysis of the mixture of acetic acid and sodium hydroxide pretreated biomass and their mixed filtrate. Bioresource Technology, 2021, 339, 125605.	9.6	14
180	Oscillatory electroosmosis-enhanced intra/inter-particle liquid transport and its primary applications in the preparative electrochromatography of proteins. Journal of Chromatography A, 2001, 921, 93-98.	3.7	13

#	Article	IF	CITATIONS
181	Acid monolayer functionalized iron oxide nanoparticles as catalysts for carbohydrate hydrolysis. Green Chemistry, 2014, 16, 836-843.	9.0	13
182	Universal Peptide Hydrogel for Scalable Physiological Formation and Bioprinting of 3D Spheroids from Human Induced Pluripotent Stem Cells. Advanced Functional Materials, 2021, 31, 2104046.	14.9	13
183	Template-free fabrication of rattle-type TiO2hollow microspheres with superior photocatalytic performance. RSC Advances, 2014, 4, 37311.	3.6	12
184	A Si–MnOOH composite with superior lithium storage properties. Chemical Communications, 2015, 51, 6164-6167.	4.1	12
185	Self-etching preparation of yolk-shell Ag@carbon nanostructures for highly effective reduction of 4-nitrophenol. Catalysis Communications, 2017, 102, 114-117.	3.3	12
186	Organosulfideâ€Based Deep Eutectic Electrolyte for Lithium Batteries. Angewandte Chemie, 2021, 133, 9969-9973.	2.0	12
187	Two Nonnegligible Factors Influencing Lignocellulosic Biomass Valorization: Filtration Method after Pretreatment and Solid Loading during Enzymatic Hydrolysis. Energy & Fuels, 2021, 35, 1546-1556.	5.1	12
188	Ultrasonic Vibration-Assisted Pelleting of Biomass: A Designed Experimental Investigation on Pellet Quality and Sugar Yield. , 2010, , .		11
189	Fluorescent Functionalized Mesoporous Silica for Radioactive Material Extraction. Separation Science and Technology, 2012, 47, 1507-1513.	2.5	11
190	A Comprehensive Investigation on the Effects of Biomass Particle Size in Cellulosic Biofuel Production. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140, .	2.3	11
191	Raspberry—like monodispersity ZnO microspheres for photodegradation of rhodamine B. Materials Research Bulletin, 2018, 99, 37-44.	5.2	10
192	Highâ€Solids Bioâ€Conversion of Maize Starch to Sugars and Ethanol. Starch/Staerke, 2019, 71, 1800142.	2.1	10
193	A robust solid electrolyte interphase layer coated on polyethylene separator surface induced by Ge interlayer for stable Li-metal batteries. Electrochimica Acta, 2021, 370, 137703.	5.2	10
194	Glucan Yield from Enzymatic Hydrolysis of Big Bluestem as Affected by Ecotype and Planting Location Along the Precipitation Gradient of the Great Plains. Bioenergy Research, 2014, 7, 799-810.	3.9	9
195	Oxirane Cleavage Kinetics of Epoxidized Soybean Oil by Water and UVâ€Polymerized Resin Adhesion Properties. JAOCS, Journal of the American Oil Chemists' Society, 2015, 92, 121-131.	1.9	9
196	Rapid Determination of Acetic Acid, Furfural, and 5-Hydroxymethylfurfural in Biomass Hydrolysates Using Near-Infrared Spectroscopy. ACS Omega, 2018, 3, 5355-5361.	3.5	9
197	Whole Maize Flour and Isolated Maize Starch for Production of Citric Acid by <i>Aspergillus niger</i> : A Review. Starch/Staerke, 2023, 75, 2000014.	2.1	9
198	A physics-based temperature model for ultrasonic vibration-assisted pelleting of cellulosic biomass. Ultrasonics, 2014, 54, 2042-2049.	3.9	8

#	Article	IF	CITATIONS
199	Ultrasonic vibration-assisted (UV-A) pelleting of wheat straw: A constitutive model for pellet density. Ultrasonics, 2015, 60, 117-125.	3.9	8
200	Comparison of two pelleting methods for cellulosic ethanol manufacturing: ultrasonic vibration-assisted pelleting vs. ring-die pelleting. Biomass Conversion and Biorefinery, 2016, 6, 13-23.	4.6	8
201	Hydrothermal synthesis of well-crystallized CuO hierarchical structures and their direct application in high performance lithium-ion battery electrodes without further calcination. RSC Advances, 2016, 6, 96882-96888.	3.6	7
202	Potential of Wheat Milling Byproducts to Produce Fermentable Sugars via Mild Ethanol–Alkaline Pretreatment. ACS Sustainable Chemistry and Engineering, 2021, 9, 3626-3632.	6.7	7
203	Experimental and Technoeconomic Assessment of Monosaccharide and Furan Production under High Biomass Loading without Solid–Liquid Separation. ACS Sustainable Chemistry and Engineering, 2022, 10, 1972-1982.	6.7	7
204	Ultrasonic Vibration Assisted Pelleting of Cellulosic Biomass: A Preliminary Experiment. , 2009, , .		6
205	Production and characterization of high strength, thin-layered, pulp fiberboard using soy protein adhesives. Journal of Adhesion Science and Technology, 2013, 27, 2065-2074.	2.6	6
206	Evaluation of Nebraska Waxy Sorghum Hybrids for Ethanol Production. Cereal Chemistry, 2013, 90, 198-203.	2.2	6
207	Retrospective analysis for phase I statistical process control and process capability study using revised sample entropy. Neural Computing and Applications, 2019, 31, 7415-7428.	5.6	6
208	Study on Mass Transfer Kinetics of Sugar Extraction from Sweet Sorghum Biomass via Diffusion Process and Ethanol Yield Using SSF. Processes, 2019, 7, 137.	2.8	6
209	Overview of Sorghum Industrial Utilization. Agronomy, 2019, , 463-476.	0.2	6
210	Electric field-induced mesostructure transformation of self-assembled silica/copolymer nanocomposite thin films. Physical Chemistry Chemical Physics, 2003, 5, 4070.	2.8	5
211	Novel photoelectrochromic cells fabricated with wirelike photo-electrode. Science Bulletin, 2008, 53, 3173-3177.	9.0	5
212	Performance analysis of PV grid-connected power conditioning system with UPS. , 2009, , .		5
213	Saltâ€Based Organic–Inorganic Nanocomposites: Towards A Stable Lithium Metal/Li 10 GeP 2 S 12 Solid Electrolyte Interface. Angewandte Chemie, 2018, 130, 13796-13800.	2.0	5
214	One-Step Hydrothermal Synthesis of Small TiO ₂ Porous Nanoparticles for Efficient Degradation of Organic Dyes. Journal of Nanoscience and Nanotechnology, 2018, 18, 3185-3191.	0.9	5
215	Optimization of Processing Parameters to Increase Thermal Conductivity of Rice Straw Fiber Film. Applied Sciences (Switzerland), 2019, 9, 4645.	2.5	5
216	A self-healing Li–S redox flow battery with alternative reaction pathways. Journal of Materials Chemistry A, 2021, 9, 12652-12658.	10.3	5

#	Article	IF	CITATIONS
217	Proteins in dried distillers' grains with solubles: A review of animal feed value and potential nonâ€food uses. JAOCS, Journal of the American Oil Chemists' Society, 2021, 98, 957-968.	1.9	5
218	Effect of pH and pH-Shifting on Lignin–Protein Interaction and Properties of Lignin-Protein Polymers. Journal of Polymers and the Environment, 2022, 30, 1908-1919.	5.0	5
219	Effect of irrigation on physicochemical properties and bioethanol yield of drought tolerant and conventional corn. Irrigation Science, 2018, 36, 75-85.	2.8	4
220	Predicting the content of camelina protein using FT-IR spectroscopy coupled with SVM model. Cluster Computing, 2019, 22, 8401-8406.	5.0	4
221	Parameter Identification and Sensitivity Analysis for Zero-Dimensional Physics-Based Lithium-Sulfur Battery Models. ASME Letters in Dynamic Systems and Control, 2021, 1, .	0.7	4
222	Effects of particle size on biomass pretreatment and hydrolysis performances in bioethanol conversion. Biomass Conversion and Biorefinery, 2023, 13, 13023-13036.	4.6	4
223	Dual Protective Mechanism of AlPO ₄ Coating on High-Nickel Cathode Material for High Energy Density and Long Cycle Life Lithium-Ion Batteries. Journal of the Electrochemical Society, 2022, 169, 050523.	2.9	4
224	Preliminary study on pretreatment of poplar wood for biofuel production. Biofuels, 2012, 3, 525-533.	2.4	3
225	A simple, rapid, one-step approach for preparation of Ag@TiO ₂ nanospheres with multiple cores as effective catalyst. RSC Advances, 2016, 6, 99878-99884.	3.6	3
226	Multifunctional Li(Ni0.5Co0.2Mn0.3) O2-Si batteries with self-actuation and self-sensing. Journal of Intelligent Material Systems and Structures, 2020, 31, 860-868.	2.5	3
227	Nanostructured Systems from Low-Dimensional Building Blocks. , 2005, , 57-93.		2
228	Direct synthesis of ordered mesoporous polymer/carbon nanofilaments with controlled mesostructures. Journal of Porous Materials, 2009, 16, 315-319.	2.6	2
229	Size Reduction of Cellulosic Biomass in Biofuel Manufacturing: A Study on Confounding Effects of Particle Size and Biomass Crystallinity. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2012, 134, .	2.2	2
230	Growth of a Large-Area, Free-Standing, Highly Conductive and Fully Foldable Silver Film with Inverted Pyramids for Wearable Electronics Applications. ACS Applied Materials & Interfaces, 2017, 9, 5312-5318.	8.0	2
231	Water-Soluble Sugars of Pedigreed Sorghum Mutant Stalks and Their Recovery after Pretreatment. Applied Sciences (Switzerland), 2020, 10, 5472.	2.5	2
232	Novel Conjugated Polymer/Silica Nanocomposites with Tunable Mesostructure Synthesized by a Robust Pd Catalyst. Materials Research Society Symposia Proceedings, 2003, 775, 771.	0.1	1
233	In-Situ and Ex-situ TEM Imaging and Spectroscopy Study of Li-Ion Battery. Microscopy and Microanalysis, 2009, 15, 726-727.	0.4	1
234	Experimental Study of Multifunctional NCM-Si Batteries With Self-Actuation. , 2018, , .		1

#	Article	IF	CITATIONS
235	Optimization of technical parameters for making temperature-increasing film from titanium dioxide and rice straw fiber. AIP Advances, 2019, 9, 025033.	1.3	1
236	Micron to Sub-Micron Sized Highly Ordered Mesoporous Silica Particles Prepared Using a High Energy Ball Milling Process. Materials Research Society Symposia Proceedings, 2003, 775, 3291.	0.1	0
237	Magnetic Cobalt Nanowire Thin Films ChemInform, 2005, 36, no.	0.0	0
238	Full Cell Design and Performance for Stationary Li-Ion Battery System. ECS Meeting Abstracts, 2010, , .	0.0	0
239	SIZE REDUCTION OF POPLAR WOOD USING A LATHE FOR BIOFUEL MANUFACTURING: EFFECTS OF BIOMASS CRYSTALLINITY ON SUGAR YIELD. Machining Science and Technology, 2014, 18, 1-14.	2.5	0
240	Hidden Subsurface Reconstruction and Its Atomic Origins in Layered Oxide Cathodes. Microscopy and Microanalysis, 2020, 26, 2542-2544.	0.4	0
241	Characterization of Four Chinese Bread Wheat Varieties over Five Years. ACS Food Science & Technology, 2021, 1, 770-777.	2.7	0
242	Palladium Nanowire Thin Films via Template Growth. Materials Research Society Symposia Proceedings, 2003, 775, 471.	0.1	0
243	Ultrasonic Vibration-Assisted Pelleting of Cellulosic Biomass for Biofuel Production. Biofuels and Biorefineries, 2015, , 243-267.	0.5	ο