Peter D Lund

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10823706/publications.pdf Version: 2024-02-01

DETED D LIND

#	Article	IF	CITATIONS
1	Review of energy system flexibility measures to enable high levels of variable renewable electricity. Renewable and Sustainable Energy Reviews, 2015, 45, 785-807.	16.4	1,133
2	A model for generating household electricity load profiles. International Journal of Energy Research, 2006, 30, 273-290.	4.5	398
3	Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy and Environmental Science, 2015, 8, 3495-3514.	30.8	225
4	Effects of large-scale photovoltaic power integration on electricity distribution networks. Renewable Energy, 2007, 32, 216-234.	8.9	210
5	Options for improving the load matching capability of distributed photovoltaics: Methodology and application to high-latitude data. Solar Energy, 2009, 83, 1953-1966.	6.1	129
6	Improved flexibility with large-scale variable renewable power in cities through optimal demand side management and power-to-heat conversion. Energy Conversion and Management, 2016, 126, 649-661.	9.2	122
7	Effect of energy storage on variations in wind power. Wind Energy, 2005, 8, 421-441.	4.2	102
8	A review of demand side flexibility potential in Northern Europe. Renewable and Sustainable Energy Reviews, 2018, 91, 654-664.	16.4	95
9	Energy integration and interaction between buildings and vehicles: A state-of-the-art review. Renewable and Sustainable Energy Reviews, 2019, 114, 109337.	16.4	85
10	Review of modelling energy transitions pathways with application to energy system flexibility. Renewable and Sustainable Energy Reviews, 2019, 101, 440-452.	16.4	82
11	Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation. Applied Energy, 2017, 190, 800-812.	10.1	75
12	Modeling flexibility and optimal use of existing power plants with large-scale variable renewable power schemes. Energy, 2016, 112, 364-375.	8.8	62
13	Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland. Energies, 2019, 12, 949.	3.1	57
14	Single-Walled Carbon Nanotube Thin-Film Counter Electrodes for Indium Tin Oxide-Free Plastic Dye Solar Cells. Journal of the Electrochemical Society, 2010, 157, B1831.	2.9	50
15	Models for generating place and time dependent urban energy demand profiles. Applied Energy, 2014, 130, 256-264.	10.1	45
16	Status and future strategies for Concentrating Solar Power in China. Energy Science and Engineering, 2017, 5, 100-109.	4.0	36
17	Different flexibility options for better system integration of wind power. Energy Strategy Reviews, 2019, 26, 100368.	7.3	33
18	Effect of major policy disruptions in energy system transition: Case Finland. Energy Policy, 2018, 116, 323-336.	8.8	25

Peter D Lund

#	Article	IF	CITATIONS
19	Pathway Analysis of a Zero-Emission Transition in the Nordic-Baltic Region. Energies, 2019, 12, 3337.	3.1	23
20	Highly conductive, non-permeable, fiber based substrate for counter electrode application in dye-sensitized solar cells. Nano Energy, 2014, 9, 212-220.	16.0	22
21	Capacity matching of storage to PV in a global frame with different loads profiles. Journal of Energy Storage, 2018, 18, 218-228.	8.1	22
22	Coupling Variable Renewable Electricity Production to the Heating Sector through Curtailment and Power-to-heat Strategies for Accelerated Emission Reduction. Future Cities and Environment, 2019, 5, .	1.6	20
23	Beyond hydrophobicity: how F4-TCNQ doping of the hole transport material improves stability of mesoporous triple-cation perovskite solar cells. Journal of Materials Chemistry A, 2022, 10, 11721-11731.	10.3	19
24	Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2016, 259, 259-265.	4.4	17
25	Thermal Performance Analysis of a Direct-Heated Recompression Supercritical Carbon Dioxide Brayton Cycle Using Solar Concentrators. Energies, 2019, 12, 4358.	3.1	15
26	A hybrid lithium-ion battery model for system-level analyses. International Journal of Energy Research, 2016, 40, 1576-1592.	4.5	14
27	Extreme sensitivity of dye solar cells to UVâ€induced degradation. Energy Science and Engineering, 2021, 9, 19-26.	4.0	11
28	Linking socio-economic aspects to power system disruption models. Energy, 2021, 222, 119928.	8.8	8
29	Energy system impact of wind power with curtailment: national- and city-scale analysis. International Journal of Low-Carbon Technologies, 2019, 14, 277-285.	2.6	6
30	Improving the Economics of Battery Storage. Joule, 2020, 4, 2543-2545.	24.0	6