
Abhijit Basu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082218/publications.pdf Version: 2024-02-01

Δρημιτ Βλοιι

#	Article	IF	CITATIONS
1	"Towards resolving the â€~jigsaw puzzle' and age-fossil inconsistency within east Gondwanaâ€ı A comment. Precambrian Research, 2021, 352, 105881.	1.2	6
2	The "Lower Kaimur Porcellanite―(Vindhyan Supergroup) is of Sedimentary Origin and not Tuff. Journal of the Geological Society of India, 2020, 95, 17-24.	0.5	0
3	Disintegration of lunar samples over time: A test. Meteoritics and Planetary Science, 2018, 53, 1096-1103.	0.7	3
4	U-Pb Age and Chemical Composition of an Ash Bed in the Chopan Porcellanite Formation, Vindhyan Supergroup, India. Journal of Geology, 2018, 126, 553-560.	0.7	21
5	U-Pb Age and Hf Isotopic Compositions of Magmatic Zircons from a Rhyolite Flow in the Porcellanite Formation in the Vindhyan Supergroup, Son Valley (India): Implications for Its Tectonic Significance. Journal of Geology, 2017, 125, 367-379.	0.7	43
6	Evolution of Siliciclastic Provenance Inquiries. , 2017, , 5-23.		11
7	Inferring tectonic provenance of siliciclastic rocks from their chemical compositions: A dissent. Sedimentary Geology, 2016, 336, 26-35.	1.0	65
8	Deformation and metamorphism of a schistose terrane accreted with the Proterozoic Pakhal sequence of Godavari valley near Kothagudem, Andhra Pradesh. Journal of the Geological Society of India, 2015, 85, 627-631.	0.5	2
9	An alternate perspective on the opening and closing of the intracratonic Purana basins in peninsular India. Journal of the Geological Society of India, 2015, 85, 5-25.	0.5	48
10	Petrogenesis of 1000 Ma Felsic Tuffs, Chhattisgarh and Indravati Basins, Bastar Craton, India: Geochemical and Hf Isotope Constraints. Journal of Geology, 2014, 122, 43-54.	0.7	18
11	Contributions of zircon U–Pb geochronology to understanding the volcanic and sedimentary history of some PurÄna basins, India. Journal of Asian Earth Sciences, 2014, 91, 252-262.	1.0	28
12	New U-Pb ages of zircons in the Owk Shale (Kurnool Group) with reflections on proterozoic porcellanites in India. Journal of the Geological Society of India, 2013, 82, 207-216.	0.5	21
13	Implications of a Newly Dated ca. 1000-Ma Rhyolitic Tuff in the Indravati Basin, Bastar Craton, India. Journal of Geology, 2012, 120, 477-485.	0.7	35
14	Depositional History of the Chhattisgarh Basin, Central India: Constraints from New SHRIMP Zircon Ages. Journal of Geology, 2011, 119, 33-50.	0.7	83
15	"SHRIMP geochronology for the 1450Ma Lakhna dyke swarm: Its implication for the presence of Eoarchaean crust in the Bastar Craton and 1450–517Ma depositional age for Purana basin (Khariar), Eastern Indian Peninsulaâ€ŧ Comment. Journal of Asian Earth Sciences, 2011, 42, 1440-1441.	1.0	1
16	New U-Pb SHRIMP Zircon Ages of the Dhamda Tuff in the Mesoproterozoic Chhattisgarh Basin, Peninsular India: Stratigraphic Implications and Significance of a 1-Ga Thermal-Magmatic Event. Journal of Geology, 2011, 119, 535-548.	0.7	59
17	Almandine garnet phenocrysts in a ~1 Ga rhyolitic tuff from central India. Geological Magazine, 2009, 146, 133-143.	0.9	21
18	Ediacaran fossils in Meso- and Paleoproterozoic rocks in peninsular India extend Darwin. Journal of the Geological Society of India, 2009, 73, 528-536.	0.5	9

Abhijit Basu

#	Article	IF	CITATIONS
19	Stratigraphic position of the â^1⁄41000Ma Sukhda Tuff (Chhattisgarh Supergroup, India) and the 500Ma question. Precambrian Research, 2008, 167, 383-388.	1.2	40
20	SHRIMP Ages of Zircon in the Uppermost Tuff in Chattisgarh Basin in Central India Require â^¼500â€Ma Adjustment in Indian Proterozoic Stratigraphy. Journal of Geology, 2007, 115, 407-415.	0.7	138
21	Trace element and Nd-isotopic evidence for sediment sources in the mid-Proterozoic Vindhyan Basin, central India. Precambrian Research, 2007, 159, 260-274.	1.2	99
22	A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. Bulletin of the Geological Society of America, 2005, 117, 244.	1.6	79
23	Heterogeneous agglutinitic glass and the fusion of the finest fraction (F ³) model. Meteoritics and Planetary Science, 2002, 37, 1835-1842.	0.7	15
24	Submillimeter grainâ€size distribution of Apollo 11 soil 10084. Meteoritics and Planetary Science, 2001, 36, 177-181.	0.7	22
25	Sediments Of The Moon And Earth As End-Members For Comparative Planetology. Earth, Moon and Planets, 1999, 85/86, 25-43.	0.3	4
26	A Laboratory Exercise on Cratering in a Geology Course for Non-Science Majors. Journal of Geoscience Education, 1998, 46, 164-168.	0.8	0
27	Anatomy of individual agglutinates from a lunar highland soil. Meteoritics and Planetary Science, 1996, 31, 777-782.	0.7	7
28	Optical effects of space weathering: The role of the finest fraction. Journal of Geophysical Research, 1993, 98, 20817-20824.	3.3	288
29	Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, U.S.A Chemical Geology, 1988, 70, 335-348.	1.4	370
30	The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method; discussion and reply. Journal of Sedimentary Research, 1985, 55, 616-618.	0.8	58
31	Chemical variability and origin of agglutinitic glass. Journal of Geophysical Research, 1985, 90, 87-94.	3.3	8
32	The production curve for agglutinates in planetary regoliths. Journal of Geophysical Research, 1983, 88, B193.	3.3	26
33	Integrated investigation of the mixed origin of lunar sample 72161,11. The Moon, 1975, 14, 129-138.	0.4	8