William D Richardson Fmedsci

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1082105/publications.pdf Version: 2024-02-01

		10389	30087
105	25,279	72	103
papers	citations	h-index	g-index
113	113	113	19351
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nutritional regulation of oligodendrocyte differentiation regulates perineuronal net remodeling in the median eminence. Cell Reports, 2021, 36, 109362.	6.4	33
2	Life-long oligodendrocyte development and plasticity. Seminars in Cell and Developmental Biology, 2021, 116, 25-37.	5.0	35
3	G proteinâ€coupled receptor GPR37â€like 1 regulates adult oligodendrocyte generation. Developmental Neurobiology, 2021, 81, 975-984.	3.0	5
4	Targeting miRâ€34a/ <i>Pdgfra</i> interactions partially corrects alveologenesis in experimental bronchopulmonary dysplasia. EMBO Molecular Medicine, 2019, 11, .	6.9	38
5	G proteinâ€coupled receptor 37â€like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia. Glia, 2018, 66, 47-61.	4.9	41
6	The regulation of the homeostasis and regeneration of peripheral nerve is distinct from the CNS and independent of a stem cell population. Development (Cambridge), 2018, 145, .	2.5	62
7	Remarkable Stability of Myelinating Oligodendrocytes in Mice. Cell Reports, 2017, 21, 316-323.	6.4	120
8	Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length. Glia, 2017, 65, 309-321.	4.9	83
9	Signalling through AMPA receptors on oligodendrocyte precursors promotes myelination by enhancing oligodendrocyte survival. ELife, 2017, 6, .	6.0	111
10	Onset of Spinal Cord Astrocyte Precursor Emigration from the Ventricular Zone Involves the Zeb1 Transcription Factor. Cell Reports, 2016, 17, 1473-1481.	6.4	14
11	Developmental Origin of Oligodendrocyte Lineage Cells Determines Response to Demyelination and Susceptibility to Age-Associated Functional Decline. Cell Reports, 2016, 15, 761-773.	6.4	112
12	Rapid production of new oligodendrocytes is required in the earliest stages of motor-skill learning. Nature Neuroscience, 2016, 19, 1210-1217.	14.8	377
13	Combining Double Fluorescence In Situ Hybridization with Immunolabelling for Detection of the Expression of Three Genes in Mouse Brain Sections. Journal of Visualized Experiments, 2016, , e53976.	0.3	10
14	Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science, 2016, 352, 1326-1329.	12.6	817
15	Pre-Existing Mature Oligodendrocytes Do Not Contribute to Remyelination following Toxin-Induced Spinal Cord Demyelination. American Journal of Pathology, 2016, 186, 511-516.	3.8	74
16	Evolution of the CNS myelin gene regulatory program. Brain Research, 2016, 1641, 111-121.	2.2	41
17	Oligodendrocyte Development and Plasticity. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020453.	5.5	402
18	Characterization of the platelet-derived growth factor receptor-α-positive cell lineage during murine late lung development. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L942-L958.	2.9	68

#	Article	IF	CITATIONS
19	Hypomyelinating leukodystrophies: Translational research progress and prospects. Annals of Neurology, 2014, 76, 5-19.	5.3	132
20	New Olig1null mice confirm a non-essential role for Olig1 in oligodendrocyte development. BMC Neuroscience, 2014, 15, 12.	1.9	23
21	Motor skill learning requires active central myelination. Science, 2014, 346, 318-322.	12.6	936
22	Pax6 is expressed in subsets of V0 and V2 interneurons in the ventral spinal cord in mice. Gene Expression Patterns, 2013, 13, 328-334.	0.8	12
23	Oligodendrocyte Dynamics in the Healthy Adult CNS: Evidence for Myelin Remodeling. Neuron, 2013, 77, 873-885.	8.1	721
24	Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain, 2013, 136, 471-482.	7.6	205
25	Properties and Fate of Oligodendrocyte Progenitor Cells in the Corpus Callosum, Motor Cortex, and Piriform Cortex of the Mouse. Journal of Neuroscience, 2012, 32, 8173-8185.	3.6	166
26	Transcription Factor Positive Regulatory Domain 4 (PRDM4) Recruits Protein Arginine Methyltransferase 5 (PRMT5) to Mediate Histone Arginine Methylation and Control Neural Stem Cell Proliferation and Differentiation. Journal of Biological Chemistry, 2012, 287, 42995-43006.	3.4	82
27	Cdc42-dependent structural development of auditory supporting cells is required for wound healing at adulthood. Scientific Reports, 2012, 2, 978.	3.3	32
28	Temporal control of neural crest lineage generation by Wnt/Î ² -catenin signaling. Development (Cambridge), 2012, 139, 2107-2117.	2.5	128
29	Regional Astrocyte Allocation Regulates CNS Synaptogenesis and Repair. Science, 2012, 337, 358-362.	12.6	448
30	Astrocytes and disease: a neurodevelopmental perspective. Genes and Development, 2012, 26, 891-907.	5.9	578
31	Regulation of Oligodendrocyte Development and Myelination by Glucose and Lactate. Journal of Neuroscience, 2011, 31, 538-548.	3.6	284
32	Phosphorylation Regulates OLIG2 Cofactor Choice and the Motor Neuron-Oligodendrocyte Fate Switch. Neuron, 2011, 69, 918-929.	8.1	115
33	NG2-glia as Multipotent Neural Stem Cells: Fact or Fantasy?. Neuron, 2011, 70, 661-673.	8.1	268
34	Dbx1-Expressing Cells Are Necessary for the Survival of the Mammalian Anterior Neural and Craniofacial Structures. PLoS ONE, 2011, 6, e19367.	2.5	19
35	Dorsally and Ventrally Derived Oligodendrocytes Have Similar Electrical Properties but Myelinate Preferred Tracts. Journal of Neuroscience, 2011, 31, 6809-6819.	3.6	151
36	Glial cells in the mouse enteric nervous system can undergo neurogenesis in response to injury. Journal of Clinical Investigation, 2011, 121, 3412-3424.	8.2	321

#	Article	IF	CITATIONS
37	An <i>Fgfr3â€iCreER^{T2}</i> transgenic mouse line for studies of neural stem cells and astrocytes. Glia, 2010, 58, 943-953.	4.9	82
38	Sox1 Is Required for the Specification of a Novel p2-Derived Interneuron Subtype in the Mouse Ventral Spinal Cord. Journal of Neuroscience, 2010, 30, 12274-12280.	3.6	70
39	NG2 Clia Generate New Oligodendrocytes But Few Astrocytes in a Murine Experimental Autoimmune Encephalomyelitis Model of Demyelinating Disease. Journal of Neuroscience, 2010, 30, 16383-16390.	3.6	230
40	CNS-Resident Glial Progenitor/Stem Cells Produce Schwann Cells as well as Oligodendrocytes during Repair of CNS Demyelination. Cell Stem Cell, 2010, 6, 578-590.	11.1	549
41	Those enigmatic NG2 cells …. Neuron Glia Biology, 2009, 5, 1-1.	1.6	1
42	Sustained Axon–Clial Signaling Induces Schwann Cell Hyperproliferation, Remak Bundle Myelination, and Tumorigenesis. Journal of Neuroscience, 2009, 29, 11304-11315.	3.6	30
43	Cell cycle dynamics of NG2 cells in the postnatal and ageing brain. Neuron Glia Biology, 2009, 5, 57-67.	1.6	213
44	Two-tier transcriptional control of oligodendrocyte differentiation. Current Opinion in Neurobiology, 2009, 19, 479-485.	4.2	83
45	Genetics meets epigenetics: HDACs and Wnt signaling in myelin development and regeneration. Nature Neuroscience, 2009, 12, 815-817.	14.8	30
46	SOX1 links the function of neural patterning and Notch signalling in the ventral spinal cord during the neuron-glial fate switch. Biochemical and Biophysical Research Communications, 2009, 390, 1114-1120.	2.1	19
47	PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice. Nature Neuroscience, 2008, 11, 1392-1401.	14.8	798
48	Expression of Tbx2 and Tbx3 in the developing hypothalamic–pituitary axis. Gene Expression Patterns, 2008, 8, 411-417.	0.8	31
49	Neural Crest Origin of Perivascular Mesenchyme in the Adult Thymus. Journal of Immunology, 2008, 180, 5344-5351.	0.8	118
50	The evolution of Olig genes and their roles in myelination. Neuron Glia Biology, 2008, 4, 129-135.	1.6	31
51	Early Forebrain Wiring: Genetic Dissection Using Conditional <i>Celsr3</i> Mutant Mice. Science, 2008, 320, 946-949.	12.6	161
52	Specification of CNS glia from neural stem cells in the embryonic neuroepithelium. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 71-85.	4.0	110
53	A regulatory network involving Foxn4, Mash1 and delta-like 4/Notch1 generates V2a and V2b spinal interneurons from a common progenitor pool. Development (Cambridge), 2007, 134, 3427-3436.	2.5	121
54	The Marginal Zone/Layer I as a Novel Niche for Neurogenesis and Gliogenesis in Developing Cerebral Cortex. Journal of Neuroscience, 2007, 27, 11376-11388.	3.6	55

#	Article	IF	CITATIONS
55	Olig1 and Sox10 Interact Synergistically to Drive <i>Myelin Basic Protein</i> Transcription in Oligodendrocytes. Journal of Neuroscience, 2007, 27, 14375-14382.	3.6	156
56	The generation of adipocytes by the neural crest. Development (Cambridge), 2007, 134, 2283-2292.	2.5	245
57	Subventricular Zone Stem Cells Are Heterogeneous with Respect to Their Embryonic Origins and Neurogenic Fates in the Adult Olfactory Bulb. Journal of Neuroscience, 2007, 27, 8286-8296.	3.6	303
58	SoxD Proteins Influence Multiple Stages of Oligodendrocyte Development and Modulate SoxE Protein Function. Developmental Cell, 2006, 11, 697-709.	7.0	229
59	A screen for mutations in zebrafish that affect myelin gene expression in Schwann cells and oligodendrocytes. Developmental Biology, 2006, 297, 1-13.	2.0	51
60	Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nature Neuroscience, 2006, 9, 173-179.	14.8	978
61	Oligodendrocyte wars. Nature Reviews Neuroscience, 2006, 7, 11-18.	10.2	350
62	Neural crest origins of the neck and shoulder. Nature, 2005, 436, 347-355.	27.8	466
63	A subset of oligodendrocytes generated from radial glia in the dorsal spinal cord. Development (Cambridge), 2005, 132, 1951-1959.	2.5	238
64	Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development (Cambridge), 2005, 132, 1855-1862.	2.5	142
65	Cooperation between sonic hedgehog and fibroblast growth factor/MAPK signalling pathways in neocortical precursors. Development (Cambridge), 2004, 131, 1289-1298.	2.5	120
66	A Dynamic Switch in the Replication Timing of Key Regulator Genes in Embryonic Stem Cells upon Neural Induction. Cell Cycle, 2004, 3, 1619-1624.	2.6	77
67	Roles for p53 and p73 during oligodendrocyte development. Development (Cambridge), 2004, 131, 1211-1220.	2.5	99
68	Receptor tyrosine phosphatase zeta/beta in astrocyte progenitors in the developing chick spinal cord. Gene Expression Patterns, 2004, 4, 161-166.	0.8	10
69	Platelet-derived growth factor regulates oligodendrocyte progenitor numbers in adult CNS and their response following CNS demyelination. Molecular and Cellular Neurosciences, 2004, 25, 252-262.	2.2	276
70	<i>Fgfr3</i> expression by astrocytes and their precursors: evidence that astrocytes and oligodendrocytes originate in distinct neuroepithelial domains. Development (Cambridge), 2003, 130, 93-102.	2.5	148
71	An â€~oligarchy' rules neural development. Trends in Neurosciences, 2002, 25, 417-422.	8.6	160
72	Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of <i>Olig2</i> and <i>Nkx2.2</i> in the control of oligodendrocyte differentiation. Development (Cambridge), 2002, 129, 681-693.	2.5	184

#	Article	IF	CITATIONS
73	Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation. Development (Cambridge), 2002, 129, 681-93.	2.5	80
74	Oligodendrocyte development in the spinal cord and telencephalon: common themes and new perspectives. International Journal of Developmental Neuroscience, 2001, 19, 379-385.	1.6	104
75	Ventral Neurogenesis and the Neuron-Glial Switch. Neuron, 2001, 31, 677-680.	8.1	100
76	Control of progenitor cell number by mitogen supply and demand. Current Biology, 2001, 11, 232-241.	3.9	121
77	Hedgehog-dependent oligodendrocyte lineage specification in the telencephalon. Development (Cambridge), 2001, 128, 2545-2554.	2.5	289
78	Oligodendrocyte lineage and the motor neuron connection. Clia, 2000, 29, 136-142.	4.9	163
79	Platelet-derived growth factor is constitutively secreted from neuronal cell bodies but not from axons. Current Biology, 2000, 10, 1283-1286.	3.9	72
80	Oligodendrocyte Population Dynamics and the Role of PDGF In Vivo. Neuron, 1998, 20, 869-882.	8.1	441
81	Dorsal Spinal Cord Neuroepithelium Generates Astrocytes but Not Oligodendrocytes. Neuron, 1998, 20, 883-893.	8.1	105
82	Pax6 Influences the Time and Site of Origin of Glial Precursors in the Ventral Neural Tube. Molecular and Cellular Neurosciences, 1998, 12, 228-239.	2.2	95
83	Origins of Spinal Cord Oligodendrocytes: Possible Developmental and Evolutionary Relationships with Motor Neurons. Developmental Neuroscience, 1997, 19, 58-68.	2.0	127
84	Normal temporal and spatial distribution of oligodendrocyte progenitors in the myelin-deficient (md) rat. , 1997, 47, 264-270.		9
85	Determination of Neuroepithelial Cell Fate: Induction of the Oligodendrocyte Lineage by Ventral Midline Cells and Sonic Hedgehog. Developmental Biology, 1996, 177, 30-42.	2.0	261
86	PDGF Mediates a Neuron–Astrocyte Interaction in the Developing Retina. Neuron, 1996, 17, 1117-1131.	8.1	221
87	Embryonic expression of myelin genes: Evidence for a focal source of oligodendrocyte precursors in the ventricular zone of the neural tube. Neuron, 1994, 12, 1353-1362.	8.1	231
88	A novel Brn3-like POU transcription factor expressed in subsets of rat sensory and spinal cord neurons. Nucleic Acids Research, 1993, 21, 3175-3182.	14.5	108
89	Growth Factors for Myelinating Glial Cells in the Central and Peripheral Nervous Systems. , 1993, , 489-508.		2
90	The Alternative-Splice Isoforms of the PDGF A-Chain Differ in their Ability to Associate with the	1.7	43

20	The Alternative-Splice isoforms of the PDGF A-Chain Differ in their Adility to Associate with the	
90	Extracellular Matrix and to Bind HeparinIn Vitro. Growth Factors, 1992, 7, 267-277.	

#	Article	IF	CITATIONS
91	Cell death and control of cell survival in the oligodendrocyte lineage. Cell, 1992, 70, 31-46.	28.9	1,267
92	Cell death in the oligodendrocyte lineage. Journal of Neurobiology, 1992, 23, 1221-1230.	3.6	156
93	Growth factors and transcription factors in oligodendrocyte development. Journal of Cell Science, 1991, 1991, 117-123.	2.0	45
94	Schwann Cells Secrete a PDGF-like Factor: Evidence for an Autocrine Growth Mechanism involving PDGF. European Journal of Neuroscience, 1990, 2, 985-992.	2.6	75
95	PDGF and intracellular signaling in the timing of oligodendrocyte differentiation Journal of Cell Biology, 1989, 109, 3411-3417.	5.2	133
96	Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture. Nature, 1988, 333, 562-565.	27.8	723
97	A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell, 1988, 53, 309-319.	28.9	739
98	The nucleoplasmin nuclear location sequence is larger and more complex than that of SV-40 large T antigen Journal of Cell Biology, 1988, 107, 841-849.	5.2	277
99	Nuclear protein migration involves two steps: Rapid binding at the nuclear envelope followed by slower translocation through nuclear pores. Cell, 1988, 52, 655-664.	28.9	572
100	The effect of protein context on nuclear location signal function. Cell, 1987, 50, 465-475.	28.9	227
101	Nuclear location signals in polyoma virus large-T. Cell, 1986, 44, 77-85.	28.9	407
102	Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature, 1984, 311, 33-38.	27.8	1,331
103	A short amino acid sequence able to specify nuclear location. Cell, 1984, 39, 499-509.	28.9	2,520
104	Requirement for either early region 1a or early region 1b adenovirus gene products in the helper effect for adeno-associated virus. Journal of Virology, 1984, 51, 404-410.	3.4	54
105	A cascade of adenovirus early functions is required for expression of adeno-associated virus. Cell, 1981, 27, 133-141.	28.9	152