List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1081943/publications.pdf Version: 2024-02-01

		31949	56687
111	7,498	53	83
papers	citations	h-index	g-index
111	111	111	5778
all docs	docs citations	times ranked	citing authors

WELLU

#	Article	IF	CITATIONS
1	The Stability, Sustained Release and Cellular Antioxidant Activity of Curcumin Nanoliposomes. Molecules, 2015, 20, 14293-14311.	1.7	265
2	Pectin Modifications: A Review. Critical Reviews in Food Science and Nutrition, 2015, 55, 1684-1698.	5.4	201
3	Stability, rheology, and β-carotene bioaccessibility of high internal phase emulsion gels. Food Hydrocolloids, 2019, 88, 210-217.	5.6	198
4	Coencapsulation of (â^')-Epigallocatechin-3-gallate and Quercetin in Particle-Stabilized W/O/W Emulsion Gels: Controlled Release and Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 3691-3699.	2.4	188
5	Degradation of high-methoxyl pectin by dynamic high pressure microfluidization and its mechanism. Food Hydrocolloids, 2012, 28, 121-129.	5.6	186
6	Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, 2019, 89, 80-89.	5.6	182
7	Enhancing the bioaccessibility of hydrophobic bioactive agents using mixed colloidal dispersions: Curcumin-loaded zein nanoparticles plus digestible lipid nanoparticles. Food Research International, 2016, 81, 74-82.	2.9	163
8	Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids and Surfaces B: Biointerfaces, 2014, 117, 330-337.	2.5	161
9	Enhancement of Curcumin Bioavailability by Encapsulation in Sophorolipid-Coated Nanoparticles: An in Vitro and in Vivo Study. Journal of Agricultural and Food Chemistry, 2018, 66, 1488-1497.	2.4	161
10	Enhancing nutraceutical bioavailability using excipient emulsions: Influence of lipid droplet size on solubility and bioaccessibility of powdered curcumin. Journal of Functional Foods, 2015, 15, 72-83.	1.6	152
11	Improved bioavailability of curcumin in liposomes prepared using a pH-driven, organic solvent-free, easily scalable process. RSC Advances, 2017, 7, 25978-25986.	1.7	152
12	Improved Physical and in Vitro Digestion Stability of a Polyelectrolyte Delivery System Based on Layer-by-Layer Self-Assembly Alginate–Chitosan-Coated Nanoliposomes. Journal of Agricultural and Food Chemistry, 2013, 61, 4133-4144.	2.4	149
13	Improving curcumin solubility and bioavailability by encapsulation in saponin-coated curcumin nanoparticles prepared using a simple pH-driven loading method. Food and Function, 2018, 9, 1829-1839.	2.1	144
14	Fabrication of OSA Starch/Chitosan Polysaccharide-Based High Internal Phase Emulsion via Altering Interfacial Behaviors. Journal of Agricultural and Food Chemistry, 2019, 67, 10937-10946.	2.4	142
15	Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohydrate Polymers, 2013, 91, 175-182.	5.1	136
16	Characterization and Bioavailability of Tea Polyphenol Nanoliposome Prepared by Combining an Ethanol Injection Method with Dynamic High-Pressure Microfluidization. Journal of Agricultural and Food Chemistry, 2014, 62, 934-941.	2.4	135
17	Encapsulation of curcumin in polysaccharide-based hydrogel beads: Impact of bead type on lipid digestion and curcumin bioaccessibility. Food Hydrocolloids, 2016, 58, 160-170.	5.6	133
18	Carboxymethyl chitosan-pullulan edible films enriched with galangal essential oil: Characterization and application in mango preservation. Carbohydrate Polymers, 2021, 256, 117579.	5.1	129

#	Article	IF	CITATIONS
19	Characterization and High-Pressure Microfluidization-Induced Activation of Polyphenoloxidase from Chinese Pear (Pyrus pyrifolia Nakai). Journal of Agricultural and Food Chemistry, 2009, 57, 5376-5380.	2.4	121
20	Improved in vitro digestion stability of (â^')-epigallocatechin gallate through nanoliposome encapsulation. Food Research International, 2014, 64, 492-499.	2.9	121
21	Pluronics modified liposomes for curcumin encapsulation: Sustained release, stability and bioaccessibility. Food Research International, 2018, 108, 246-253.	2.9	121
22	Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chemistry, 2016, 196, 396-404.	4.2	118
23	Impact of Delivery System Type on Curcumin Bioaccessibility: Comparison of Curcumin-Loaded Nanoemulsions with Commercial Curcumin Supplements. Journal of Agricultural and Food Chemistry, 2018, 66, 10816-10826.	2.4	113
24	Activation and conformational changes of mushroom polyphenoloxidase by high pressure microfluidization treatment. Innovative Food Science and Emerging Technologies, 2009, 10, 142-147.	2.7	109
25	Utilizing Food Matrix Effects To Enhance Nutraceutical Bioavailability: Increase of Curcumin Bioaccessibility Using Excipient Emulsions. Journal of Agricultural and Food Chemistry, 2015, 63, 2052-2062.	2.4	107
26	pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocolloids, 2018, 77, 870-878.	5.6	104
27	Behaviour of liposomes loaded with bovine serum albumin during in vitro digestion. Food Chemistry, 2015, 175, 16-24.	4.2	102
28	Enhancement of carotenoid bioaccessibility from carrots using excipient emulsions: influence of particle size of digestible lipid droplets. Food and Function, 2016, 7, 93-103.	2.1	101
29	Structure and integrity of liposomes prepared from milk- or soybean-derived phospholipids during in vitro digestion. Food Research International, 2012, 48, 499-506.	2.9	99
30	Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Research International, 2018, 114, 30-37.	2.9	96
31	The effect of dynamic high-pressure microfluidization on the activity, stability and conformation of trypsin. Food Chemistry, 2010, 123, 616-621.	4.2	94
32	Food-grade nanoparticles for encapsulation, protection and delivery of curcumin: comparison of lipid, protein, and phospholipid nanoparticles under simulated gastrointestinal conditions. RSC Advances, 2016, 6, 3126-3136.	1.7	93
33	Rheological, structural, and microstructural properties of ethanol induced cold-set whey protein emulsion gels: Effect of oil content. Food Chemistry, 2019, 291, 22-29.	4.2	92
34	Utilization of biopolymers to stabilize curcumin nanoparticles prepared by the pH-shift method: Caseinate, whey protein, soy protein and gum Arabic. Food Hydrocolloids, 2020, 107, 105963.	5.6	91
35	Hybrid liposomes composed of amphiphilic chitosan and phospholipid: Preparation, stability and bioavailability as a carrier for curcumin. Carbohydrate Polymers, 2017, 156, 322-332.	5.1	90
36	Mushroom (Agaricus bisporus) polyphenoloxidase inhibited by apigenin: Multi-spectroscopic analyses and computational docking simulation. Food Chemistry, 2016, 203, 430-439.	4.2	88

#	Article	IF	CITATIONS
37	Extraction, characterization and spontaneous gel-forming property of pectin from creeping fig (Ficus) Tj ETQq1	0,784314	l rgBT /Overl
38	Designing excipient emulsions to increase nutraceutical bioavailability: emulsifier type influences curcumin stability and bioaccessibility by altering gastrointestinal fate. Food and Function, 2015, 6, 2475-2486.	2.1	84
39	A stable high internal phase emulsion fabricated with OSA-modified starch: an improvement in β-carotene stability and bioaccessibility. Food and Function, 2019, 10, 5446-5460.	2.1	84
40	Boosting the bioavailability of hydrophobic nutrients, vitamins, and nutraceuticals in natural products using excipient emulsions. Food Research International, 2016, 88, 140-152.	2.9	81
41	Improvement on stability, loading capacity and sustained release of rhamnolipids modified curcumin liposomes. Colloids and Surfaces B: Biointerfaces, 2019, 183, 110460.	2.5	75
42	A review of the rheological properties of dilute and concentrated food emulsions. Journal of Texture Studies, 2020, 51, 45-55.	1.1	72
43	Encapsulation of Lipophilic Polyphenols into Nanoliposomes Using pH-Driven Method: Advantages and Disadvantages. Journal of Agricultural and Food Chemistry, 2019, 67, 7506-7511.	2.4	69
44	Relationship between Functional Properties and Aggregation Changes of Whey Protein Induced by High Pressure Microfluidization. Journal of Food Science, 2011, 76, E341-7.	1.5	67
45	Pickering-stabilized emulsion gels fabricated from wheat protein nanoparticles: Effect of pH, NaCl and oil content. Journal of Dispersion Science and Technology, 2018, 39, 826-835.	1.3	67
46	Effect of ammonium sulfate fractional precipitation on gel strength and characteristics of gelatin from bighead carp (Hypophthalmichthys nobilis) scale. Food Hydrocolloids, 2014, 36, 173-180.	5.6	65
47	Fabrication and Characterization of Curcumin-Loaded Liposomes Formed from Sunflower Lecithin: Impact of Composition and Environmental Stress. Journal of Agricultural and Food Chemistry, 2018, 66, 12421-12430.	2.4	65
48	Influence of ionic strength and thermal pretreatment on the freeze-thaw stability of Pickering emulsion gels. Food Chemistry, 2020, 303, 125401.	4.2	64
49	Alkylated pectin: Synthesis, characterization, viscosity and emulsifying properties. Food Hydrocolloids, 2015, 50, 65-73.	5.6	63
50	Fabrication of polysaccharide-based high internal phase emulsion gels: Enhancement of curcumin stability and bioaccessibility. Food Hydrocolloids, 2021, 117, 106679.	5.6	63
51	Different modes of inhibition for organic acids on polyphenoloxidase. Food Chemistry, 2016, 199, 439-446.	4.2	61
52	Influence of Lipid Phase Composition of Excipient Emulsions on Curcumin Solubility, Stability, and Bioaccessibility. Food Biophysics, 2016, 11, 213-225.	1.4	58
53	Impact of curcumin delivery system format on bioaccessibility: nanocrystals, nanoemulsion droplets, and natural oil bodies. Food and Function, 2019, 10, 4339-4349.	2.1	58
54	Plant-Based Nanoparticles Prepared from Proteins and Phospholipids Consisting of a Core–Multilayer-Shell Structure: Fabrication, Stability, and Foamability. Journal of Agricultural and Food Chemistry, 2019, 67, 6574-6584.	2.4	58

#	Article	IF	CITATIONS
55	Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein. Innovative Food Science and Emerging Technologies, 2021, 67, 102582.	2.7	53
56	A novel delivery system dextran sulfate coated amphiphilic chitosan derivatives-based nanoliposome: Capacity to improve in vitro digestion stability of (â°')-epigallocatechin gallate. Food Research International, 2015, 69, 114-120.	2.9	50
57	Potential of Excipient Emulsions for Improving Quercetin Bioaccessibility and Antioxidant Activity: An in Vitro Study. Journal of Agricultural and Food Chemistry, 2016, 64, 3653-3660.	2.4	49
58	Stabilizing Oil-in-Water Emulsion with Amorphous and Granular Octenyl Succinic Anhydride Modified Starches. Journal of Agricultural and Food Chemistry, 2018, 66, 9301-9308.	2.4	48
59	The effect of citric acid on the activity, thermodynamics and conformation of mushroom polyphenoloxidase. Food Chemistry, 2013, 140, 289-295.	4.2	47
60	Tunable high internal phase emulsions (HIPEs) formulated using lactoferrin-gum Arabic complexes. Food Hydrocolloids, 2021, 113, 106445.	5.6	46
61	Aggregation and conformational change of mushroom (Agaricus bisporus) polyphenoloxidase subjected to thermal treatment. Food Chemistry, 2017, 214, 423-431.	4.2	44
62	Gastrointestinal Fate of Fluid and Gelled Nutraceutical Emulsions: Impact on Proteolysis, Lipolysis, and Quercetin Bioaccessibility. Journal of Agricultural and Food Chemistry, 2018, 66, 9087-9096.	2.4	44
63	Inhibitory effects of organic acids on polyphenol oxidase: From model systems to food systems. Critical Reviews in Food Science and Nutrition, 2020, 60, 3594-3621.	5.4	42
64	Extraction of pectin from Premna microphylla turcz leaves and its physicochemical properties. Carbohydrate Polymers, 2014, 102, 376-384.	5.1	40
65	Antigenicity and conformational changes of β-lactoglobulin by dynamic high pressure microfluidization combining with glycation treatment. Journal of Dairy Science, 2014, 97, 4695-4702.	1.4	39
66	Dynamic high-pressure microfluidization assisting octenyl succinic anhydride modification of rice starch. Carbohydrate Polymers, 2018, 193, 336-342.	5.1	39
67	Storage Stability and Antibacterial Activity of Eugenol Nanoliposomes Prepared by an Ethanol Injection–Dynamic High-Pressure Microfluidization Method. Journal of Food Protection, 2015, 78, 22-30.	0.8	37
68	Alkylated pectin: Molecular characterization, conformational change and gel property. Food Hydrocolloids, 2017, 69, 341-349.	5.6	37
69	Encapsulation of hydrophobic capsaicin within the aqueous phase of water-in-oil high internal phase emulsions: Controlled release, reduced irritation, and enhanced bioaccessibility. Food Hydrocolloids, 2022, 123, 107184.	5.6	37
70	Physical–chemical stability and in vitro digestibility of hybrid nanoparticles based on the layer-by-layer assembly of lactoferrin and BSA on liposomes. Food and Function, 2017, 8, 1688-1697.	2.1	36
71	The effect of high speed shearing on disaggregation and degradation of pectin from creeping fig seeds. Food Chemistry, 2014, 165, 1-8.	4.2	35
72	Hybrid Bionanoparticle-Stabilized Pickering Emulsions for Quercetin Delivery: Effect of Interfacial Composition on Release, Lipolysis, and Bioaccessibility. ACS Applied Nano Materials, 2019, 2, 6462-6472.	2.4	33

#	Article	IF	CITATIONS
73	Effect of citric acid and high pressure thermal processing on enzyme activity and related quality attributes of pear puree. Innovative Food Science and Emerging Technologies, 2018, 45, 196-207.	2.7	31
74	Effect of dynamic high-pressure microfluidization at different temperatures on the antigenic response of bovine I2-lactoglobulin. European Food Research and Technology, 2011, 233, 95-102.	1.6	30
75	Rheological and microstructural properties of cold-set emulsion gels fabricated from mixed proteins: Whey protein and lactoferrin. Food Research International, 2019, 119, 315-324.	2.9	30
76	Enhancing the oxidative stability of algal oil emulsions by adding sweet orange oil: Effect of essential oil concentration. Food Chemistry, 2021, 355, 129508.	4.2	30
77	Different inhibition mechanisms of gentisic acid and cyaniding-3-O-glucoside on polyphenoloxidase. Food Chemistry, 2017, 234, 445-454.	4.2	29
78	Stability and conformational change of methoxypolyethylene glycol modification for native and unfolded trypsin. Food Chemistry, 2014, 146, 278-283.	4.2	28
79	Effect of ultrasound combined with malic acid on the activity and conformation of mushroom (Agaricus bisporus) polyphenoloxidase. Enzyme and Microbial Technology, 2016, 90, 61-68.	1.6	28
80	Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering. Journal of Food Engineering, 2021, 291, 110228.	2.7	28
81	The Inactivation Kinetics of Soluble and Membrane-Bound Polyphenol Oxidase in Pear during Thermal and High-Pressure Processing. Food and Bioprocess Technology, 2018, 11, 1039-1049.	2.6	27
82	Comparative study on the effects of nystose and fructofuranosyl nystose in the glycation reaction on the antigenicity and conformation of β-lactoglobulin. Food Chemistry, 2015, 188, 658-663.	4.2	26
83	Fabrication of Caseinate Stabilized Thymol Nanosuspensions via the pH-Driven Method: Enhancement in Water Solubility of Thymol. Foods, 2021, 10, 1074.	1.9	24
84	Emulsifying and emulsion stabilization mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds: Comparison with apple and citrus pectin. Food Hydrocolloids, 2022, 130, 107674.	5.6	24
85	Gliadin Nanoparticles Pickering Emulgels for β-Carotene Delivery: Effect of Particle Concentration on the Stability and Bioaccessibility. Molecules, 2020, 25, 4188.	1.7	21
86	Novel folated pluronic F127 modified liposomes for delivery of curcumin: preparation, release, and cytotoxicity. Journal of Microencapsulation, 2020, 37, 220-229.	1.2	20
87	The Formation of Chitosan-Coated Rhamnolipid Liposomes Containing Curcumin: Stability and In Vitro Digestion. Molecules, 2021, 26, 560.	1.7	20
88	Impact of polysaccharide mixtures on the formation, stability and EGCG loading of water-in-oil high internal phase emulsions. Food Chemistry, 2022, 372, 131225.	4.2	19
89	Utilization of polysaccharide-based high internal phase emulsion for nutraceutical encapsulation: Enhancement of carotenoid loading capacity and stability. Journal of Functional Foods, 2021, 84, 104601.	1.6	19
90	Inhibitory mechanism of salicylic acid on polyphenol oxidase: A cooperation between acidification and binding effects. Food Chemistry, 2021, 348, 129100.	4.2	18

#	Article	IF	CITATIONS
91	Purification and conformational changes of bovine PEGylated β-lactoglobulin related to antigenicity. Food Chemistry, 2016, 199, 387-392.	4.2	17
92	Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. Journal of Dispersion Science and Technology, 2020, 41, 207-213.	1.3	16
93	Differential inhibitory effects of organic acids on pear polyphenol oxidase in model systems and pear puree. LWT - Food Science and Technology, 2020, 118, 108704.	2.5	16
94	Utilization of protein nanoparticles to improve the dispersibility, stability, and functionality of a natural pigment: Norbixin. Food Hydrocolloids, 2022, 124, 107329.	5.6	16
95	Industry-scale microfluidizer system produced whole mango juice: Effect on the physical properties, microstructure and pectin properties. Innovative Food Science and Emerging Technologies, 2022, 75, 102887.	2.7	16
96	Effect of modified atmosphere packaging combined with plant essential oils on preservation of fresh-cut lily bulbs. LWT - Food Science and Technology, 2022, 162, 113513.	2.5	16
97	Extraction, characterization and spontaneous gelation mechanism of pectin from Nicandra physaloides (Linn.) Gaertn seeds. International Journal of Biological Macromolecules, 2022, 195, 523-529.	3.6	14
98	Effect of dynamic high pressure microfluidization on structure and stability of pluronic F127 modified liposomes. Journal of Dispersion Science and Technology, 2019, 40, 982-989.	1.3	13
99	Study on curcumin encapsulated in whole nutritional food model milk: Effect of fat content, and partitioning situation. Journal of Functional Foods, 2022, 90, 104990.	1.6	12
100	Microfluidization: A promising food processing technology and its challenges in industrial application. Food Control, 2022, 137, 108794.	2.8	12
101	The enhancement of gastrointestinal digestibility of βâ€LG by dynamic highâ€pressure microfluidization to reduce its antigenicity. International Journal of Food Science and Technology, 2019, 54, 1677-1683.	1.3	10
102	Steady-state kinetics of tryptic hydrolysis of β-lactoglobulin after dynamic high-pressure microfluidization treatment in relation to antigenicity. European Food Research and Technology, 2014, 239, 525-531.	1.6	8
103	Comparison of antigenicity and conformational changes to β-lactoglobulin following kestose glycation reaction with and without dynamic high-pressure microfluidization treatment. Food Chemistry, 2019, 278, 491-496.	4.2	8
104	Improving norbixin dispersibility and stability by liposomal encapsulation using the <scp>pH</scp> â€driven method. Journal of the Science of Food and Agriculture, 2022, 102, 2070-2079.	1.7	8
105	Comparing the effect of benzoic acid and cinnamic acid hydroxyl derivatives on polyphenol oxidase: activity, action mechanism, and molecular docking. Journal of the Science of Food and Agriculture, 2022, 102, 3771-3780.	1.7	8
106	Unfolding and Inhibition of Polyphenoloxidase Induced by Acidic pH and Mild Thermal Treatment. Food and Bioprocess Technology, 2019, 12, 1907-1916.	2.6	6
107	Relating physicochemical properties of alginate-HMP complexes to their performance as drug delivery systems. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 2242-2254.	1.9	5
108	Effective change on rheology and structure properties of xanthan gum by industry-scale microfluidization treatment. Food Hydrocolloids, 2022, 124, 107319.	5.6	5

#	Article	IF	CITATIONS
109	A new site-specific monoPEGylated β-lactoglobulin at the N-terminal: Effect of different molecular weights of mPEG on its conformation and antigenicity. Food Chemistry, 2021, 343, 128402.	4.2	4
110	Improving Anti-listeria Activity of Thymol Emulsions by Adding Lauric Acid. Frontiers in Nutrition, 2022, 9, 859293.	1.6	2
111	Effect of pluronic block composition on the structure, stability, and cytotoxicity of liposomes. Journal of Dispersion Science and Technology, 2021, 42, 1651-1659.	1.3	1