Yijing Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10818202/publications.pdf

Version: 2024-02-01

		759233	752698
21	517	12	20
papers	citations	h-index	g-index
21	21	21	343
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. Journal of Materials Chemistry A, 2020, 8, 20474-20485.	10.3	147
2	A General Crosslinker Strategy to Realize Intrinsic Frozen Resistance of Hydrogels. Advanced Materials, 2021, 33, e2104006.	21.0	82
3	A General Protein Unfoldingâ€Chemical Coupling Strategy for Pure Protein Hydrogels with Mechanically Strong and Multifunctional Properties. Advanced Science, 2022, 9, e2102557.	11.2	40
4	A mechanistic survey of Alzheimer's disease. Biophysical Chemistry, 2022, 281, 106735.	2.8	34
5	Antimicrobial \hat{l} ±-defensins as multi-target inhibitors against amyloid formation and microbial infection. Chemical Science, 2021, 12, 9124-9139.	7.4	25
6	Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS Applied Bio Materials, 2020, 3, 8286-8308.	4.6	20
7	Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. Journal of Materials Chemistry B, 2022, 10, 2280-2295.	5.8	20
8	Amyloid cross-seeding between $\hat{Al^2}$ and hIAPP in relation to the pathogenesis of Alzheimer and type 2 diabetes. Chinese Journal of Chemical Engineering, 2021, 30, 225-235.	3.5	18
9	Machine Learning-Enabled Repurposing and Design of Antifouling Polymer Brushes. Chemical Engineering Journal, 2021, 420, 129872.	12.7	17
10	Repurposing a Cardiovascular Disease Drug of Cloridarol as hIAPP Inhibitor. ACS Chemical Neuroscience, 2021, 12, 1419-1427.	3.5	15
11	Dual amyloid cross-seeding reveals steric zipper-facilitated fibrillization and pathological links between protein misfolding diseases. Journal of Materials Chemistry B, 2021, 9, 3300-3316.	5.8	15
12	Machine Learning-Enabled Design and Prediction of Protein Resistance on Self-Assembled Monolayers and Beyond. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11306-11319.	8.0	14
13	Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates with Multiâ€Target Functionality. Advanced Functional Materials, 2021, 31, 2102978.	14.9	13
14	Aromadendrin: a dual amyloid promoter to accelerate fibrillization and reduce cytotoxicity of both amyloid- \hat{l}^2 and hIAPP. Materials Advances, 2020, 1, 1241-1252.	5.4	11
15	Mechanically Strong Metal–Organic Framework Nanoparticle-Based Double Network Hydrogels for Fluorescence Imaging. ACS Applied Nano Materials, 2022, 5, 1348-1355.	5.0	11
16	Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer. Journal of Physical Chemistry B, 2020, 124, 7830-7841.	2.6	8
17	Cross-seeding between $\hat{Al^2}$ and SEVI indicates a pathogenic link and gender difference between alzheimer diseases and AIDS. Communications Biology, 2022, 5, 417.	4.4	8
18	A new strategy to reconcile amyloid crossâ€seeding and amyloid prevention in a binary system of αâ€synuclein fragmental peptide and <scp>hIAPP</scp> . Protein Science, 2022, 31, 485-497.	7.6	7

YIJING TANG

#	Article	IF	CITATIONS
19	Conformational-specific self-assembled peptides as dual-mode, multi-target inhibitors and detectors for different amyloid proteins. Journal of Materials Chemistry B, 2022, 10, 1754-1762.	5.8	6
20	Repurposing of intestinal defensins as multi-target, dual-function amyloid inhibitors <i>via</i> cross-seeding. Chemical Science, 2022, 13, 7143-7156.	7.4	6
21	Design and Engineering of Amyloid Aggregationâ€Prone Fragments and Their Antimicrobial Conjugates with Multiâ€Target Functionality (Adv. Funct. Mater. 32/2021). Advanced Functional Materials, 2021, 31, 2170236.	14.9	0