Brooke A Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10818146/publications.pdf

Version: 2024-02-01

23 papers 487

687363 13 h-index 677142 22 g-index

24 all docs

24 docs citations

times ranked

24

460 citing authors

#	Article	IF	CITATIONS
1	The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, 4033-4042.	3.3	11
2	Frontispiece: The Unexpected Baseâ€Pairing Behavior of Cyanuric Acid in RNA and Ribose versus Cyanuric Acid Induced Helicene Assembly of Nucleic Acids: Implications for the Preâ€RNA Paradigm. Chemistry - A European Journal, 2021, 27, .	3.3	0
3	Towards next generation antisense oligonucleotides: mesylphosphoramidate modification improves therapeutic index and duration of effect of gapmer antisense oligonucleotides. Nucleic Acids Research, 2021, 49, 9026-9041.	14.5	61
4	Origins of the Increased Affinity of Phosphorothioate-Modified Therapeutic Nucleic Acids for Proteins. Journal of the American Chemical Society, 2020, 142, 7456-7468.	13.7	56
5	Nanopore Sequencing of an Expanded Genetic Alphabet Reveals High-Fidelity Replication of a Predominantly Hydrophobic Unnatural Base Pair. Journal of the American Chemical Society, 2020, 142, 2110-2114.	13.7	19
6	Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. Journal of the American Chemical Society, 2019, 141, 10644-10653.	13.7	52
7	Heterogeneous Pyrophosphateâ€Linked DNA–Oligonucleotides: Aversion to DNA but Affinity for RNA. Chemistry - A European Journal, 2018, 24, 6837-6842.	3.3	12
8	Synthesis of Fluorescence Turnâ€On DNA Hybridization Probe Using the DEA tC 2′â€Deoxycytidine Analog. Current Protocols in Nucleic Acid Chemistry, 2018, 75, e59.	0.5	2
9	Merging Two Strategies for Mixed-Sequence Recognition of Double-Stranded DNA: Pseudocomplementary Invader Probes. Journal of Organic Chemistry, 2016, 81, 3335-3346.	3.2	11
10	Next-generation bis-locked nucleic acids with stacking linker and 2′-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Research, 2016, 44, 2007-2019.	14.5	24
11	Mixed-Sequence Recognition of Double-Stranded DNA Using Enzymatically Stable Phosphorothioate Invader Probes. Molecules, 2015, 20, 13780-13793.	3.8	6
12	Recognition of Double-Stranded DNA Using Energetically Activated Duplexes Modified with N2′-Pyrene-, Perylene-, or Coronene-Functionalized 2′-N-Methyl-2′-amino-DNA Monomers. Journal of Organic Chemistry, 2015, 80, 5395-5406.	3.2	14
13	Invader probes: harnessing the energy of intercalation to facilitate recognition of chromosomal DNA for diagnostic applications. Chemical Science, 2015, 6, 5006-5015.	7.4	22
14	Synthesis and characterization of oligodeoxyribonucleotides modified with 2′-thio-2′-deoxy-2′-S-(pyren-1-yl)methyluridine. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 3999-4004.	2.2	5
15	C5-Amino acid functionalized LNA: positively poised for antisense applications. Chemical Communications, 2014, 50, 9007-9009.	4.1	12
16	C5-Alkynyl-Functionalized \hat{l} ±-L-LNA: Synthesis, Thermal Denaturation Experiments and Enzymatic Stability. Journal of Organic Chemistry, 2014, 79, 5062-5073.	3.2	7
17	Synthesis and Biophysical Properties of C5-Functionalized LNA (Locked Nucleic Acid). Journal of Organic Chemistry, 2014, 79, 5047-5061.	3.2	27
18	Synthesis and Characterization of Oligodeoxyribonucleotides Modified with 2′-Amino-α- <scp>I</scp> -LNA Adenine Monomers: High-Affinity Targeting of Single-Stranded DNA. Journal of Organic Chemistry, 2013, 78, 12690-12702.	3.2	12

#	Article	IF	CITATION
19	Identification and Characterization of Second-Generation Invader Locked Nucleic Acids (LNAs) for Mixed-Sequence Recognition of Double-Stranded DNA. Journal of Organic Chemistry, 2013, 78, 9560-9570.	3.2	32
20	High-Affinity DNA Targeting Using Readily Accessible Mimics of N2′-Functionalized 2′-Amino-α-L-LNA. Journal of Organic Chemistry, 2011, 76, 7119-7131.	3.2	32
21	C5â€Functionalized DNA, LNA, and α―L ‣NA: Positional Control of Polarityâ€Sensitive Fluorophores Leads to Improved SNPâ€Typing. Chemistry - A European Journal, 2011, 17, 3157-3165.	3.3	33
22	C5â€Functionalized LNA: Unparalleled Hybridization Properties and Enzymatic Stability. ChemBioChem, 2009, 10, 2740-2743.	2.6	18
23	Optimized DNA-targeting using triplex forming C5-alkynyl functionalized LNA. Chemical Communications, 2009, , 6756.	4.1	19