
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10817585/publications.pdf Version: 2024-02-01

MOKHTAD ADAMI

#	Article	IF	CITATIONS
1	Removal of dyes from colored textile wastewater by orange peel adsorbent: Equilibrium and kinetic studies. Journal of Colloid and Interface Science, 2005, 288, 371-376.	9.4	433
2	Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull. Journal of Hazardous Materials, 2006, 135, 171-179.	12.4	361
3	Adsorption of textile dyes on Pine Cone from colored wastewater: Kinetic, equilibrium and thermodynamic studies. Desalination, 2011, 268, 117-125.	8.2	342
4	Novel biocompatible composite (Chitosan–zinc oxide nanoparticle): Preparation, characterization and dye adsorption properties. Colloids and Surfaces B: Biointerfaces, 2010, 80, 86-93.	5.0	247
5	Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. Journal of Colloid and Interface Science, 2006, 295, 159-164.	9.4	221
6	Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chemical Engineering Journal, 2005, 112, 191-196.	12.7	209
7	Dye removal from colored textile wastewater using acrylic grafted nanomembrane. Desalination, 2011, 267, 107-113.	8.2	161
8	Investigation on the adsorption capability of egg shell membrane towards model textile dyes. Chemosphere, 2006, 65, 1999-2008.	8.2	150
9	Evaluation of the adsorption kinetics and equilibrium for the potential removal of acid dyes using a biosorbent. Chemical Engineering Journal, 2008, 139, 2-10.	12.7	149
10	Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. Journal of Photochemistry and Photobiology B: Biology, 2009, 94, 20-24.	3.8	137
11	Dye removal from colored textile wastewater using chitosan in binary systems. Desalination, 2011, 267, 64-72.	8.2	137
12	Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. Journal of the Taiwan Institute of Chemical Engineers, 2012, 43, 282-290.	5.3	129
13	Photocatalytic degradation of terephthalic acid using titania and zinc oxide photocatalysts: Comparative study. Desalination, 2010, 252, 8-16.	8.2	128
14	Dye adsorption and desorption properties of <i>Mentha pulegium</i> in single and binary systems. Journal of Applied Polymer Science, 2011, 122, 1489-1499.	2.6	126
15	Electrochemical effect of cationic gemini surfactant and halide salts on corrosion inhibition of low carbon steel in acid medium. Corrosion Science, 2010, 52, 794-800.	6.6	124
16	Textile Dye Removal from Single and Ternary Systems Using Date Stones: Kinetic, Isotherm, and Thermodynamic Studies. Journal of Chemical & Engineering Data, 2010, 55, 4638-4649.	1.9	118
17	Photocatalytic degradation of agricultural N-heterocyclic organic pollutants using immobilized nanoparticles of titania. Journal of Hazardous Materials, 2007, 145, 65-71.	12.4	115
18	Decolorization and aromatic ring degradation of colored textile wastewater using indirect electrochemical oxidation method. Desalination, 2009, 249, 1074-1078.	8.2	112

#	Article	IF	CITATIONS
19	Preparation and photocatalytic activity of immobilized composite photocatalyst (titania) Tj ETQq1 1 0.784314	rgB <u>T</u> /Over	lock 10 Tf 50
20	Numerical finite volume modeling of dye decolorization using immobilized titania nanophotocatalysis. Chemical Engineering Journal, 2009, 146, 189-193.	12.7	109
21	Degradation of sericin (degumming) of Persian silk by ultrasound and enzymes as a cleaner and environmentally friendly process. Journal of Cleaner Production, 2010, 18, 146-151.	9.3	108
22	Nanophotocatalysis using immobilized titanium dioxide nanoparticle. Materials Research Bulletin, 2007, 42, 797-806.	5.2	107
23	Degumming of Persian silk with mixed proteolytic enzymes. Journal of Applied Polymer Science, 2007, 106, 267-275.	2.6	102
24	Modeling and sensitivity analysis of dyes adsorption onto natural adsorbent from colored textile wastewater. Journal of Applied Polymer Science, 2008, 109, 4043-4048.	2.6	102
25	Preparation, characterization and dye adsorption properties of biocompatible composite (alginate/titania nanoparticle). Desalination, 2011, 275, 93-101.	8.2	102
26	Silk degumming using microwave irradiation as an environmentally friendly surface modification method. Fibers and Polymers, 2010, 11, 234-240.	2.1	101
27	Effect of nonionic co-surfactants on corrosion inhibition effect of cationic gemini surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 355, 183-186.	4.7	101
28	Kinetic, equilibrium and thermodynamic studies of ternary system dye removal using a biopolymer. Industrial Crops and Products, 2012, 35, 295-301.	5.2	101
29	Photocatalytic degradation of triazinic ring-containing azo dye (Reactive Red 198) by using immobilized TiO2 photoreactor: Bench scale study. Journal of Hazardous Materials, 2006, 133, 113-118.	12.4	100
30	Single and Binary System Dye Removal from Colored Textile Wastewater by a Dendrimer as a Polymeric Nanoarchitecture: Equilibrium and Kinetics. Journal of Chemical & Engineering Data, 2010, 55, 4660-4668.	1.9	100
31	Grafting of chitosan as a biopolymer onto wool fabric using anhydride bridge and its antibacterial property. Colloids and Surfaces B: Biointerfaces, 2010, 76, 397-403.	5.0	98
32	Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 2011, 272, 187-195.	8.2	98
33	Decolorization and mineralization of textile dyes at solution bulk by heterogeneous nanophotocatalysis using immobilized nanoparticles of titanium dioxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 125-131.	4.7	97
34	Nanophotocatalysis using nanoparticles of titania. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 189, 1-6.	3.9	97
35	Environmentally friendly surface modification of silk fiber: Chitosan grafting and dyeing. Applied Surface Science, 2009, 255, 4171-4176.	6.1	97
36	Novel biosorbent (Canola hull): Surface characterization and dye removal ability at different cationic dye concentrations. Desalination, 2010, 264, 134-142.	8.2	97

#	Article	IF	CITATIONS
37	The chain length influence of cationic surfactant and role of nonionic co-surfactants on controlling the corrosion rate of steel in acidic media. Corrosion Science, 2009, 51, 1817-1821.	6.6	95
38	Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium(IV) oxide nanoparticles. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 182, 60-66.	3.9	90
39	Interactions of gemini cationic surfactants with anionic azo dyes and their inhibited effects on dyeability of cotton fabric. Dyes and Pigments, 2007, 72, 331-338.	3.7	88
40	Dye removal from coloredâ€ŧextile wastewater using chitosanâ€₽PI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. Journal of Applied Polymer Science, 2013, 127, 2607-2619.	2.6	86
41	Dye Removal from Colored Textile Wastewater by Poly(propylene imine) Dendrimer: Operational Parameters and Isotherm Studies. Clean - Soil, Air, Water, 2011, 39, 673-679.	1.1	85
42	Removal of Mn2+ ions from synthetic wastewater by electrocoagulation process. Desalination, 2010, 260, 23-28.	8.2	84
43	Facile synthesis of Fe 3 O 4 nanoparticles via aqueous based electro chemical route for heterogeneous electro-Fenton removal of azo dyes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 91-105.	5.3	79
44	Synthesis, spectral properties and application of novel monoazo disperse dyes derived from N-ester-1,8-naphthalimide to polyester. Dyes and Pigments, 2008, 76, 684-689.	3.7	73
45	Discoloration of wastewater in a continuous electro-Fenton process using modified graphite electrode with multi-walled carbon nanotubes/surfactant. Separation and Purification Technology, 2014, 130, 34-44.	7.9	68
46	Evaluation of Adsorption Characteristics of Multiwalled Carbon Nanotubes Modified by a Poly(propylene imine) Dendrimer in Single and Multiple Dye Solutions: Isotherms, Kinetics, and Thermodynamics. Journal of Chemical & Engineering Data, 2014, 59, 444-454.	1.9	65
47	Preparation of chitosan-ethyl acrylate as a biopolymer adsorbent for basic dyes removal from colored solutions. Journal of Environmental Chemical Engineering, 2013, 1, 406-415.	6.7	58
48	Removal of Co (II) from aqueous solution by electrocoagulation process using aluminum electrodes. Desalination, 2011, 279, 121-126.	8.2	52
49	Application of Carbon Nanotubes Coated Electrodes and Immobilized TiO ₂ for Dye Degradation in a Continuous Photocatalytic-Electro-Fenton Process. Industrial & Engineering Chemistry Research, 2014, 53, 16261-16269.	3.7	44
50	Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination, 2011, 279, 183-189.	8.2	42
51	Fabrication of Electrospun Polyamide-6/Chitosan Nanofibrous Membrane toward Anionic Dyes Removal. Journal of Nanotechnology, 2014, 2014, 1-12.	3.4	42
52	Photocatalytic discoloration of Acid Red 14 aqueous solution using titania nanoparticles immobilized on graphene oxide fabricated plate. Chemosphere, 2016, 159, 293-299.	8.2	39
53	Enhanced acidic dye adsorption onto the dendrimer-based modified halloysite nanotubes. Desalination and Water Treatment, 2016, 57, 26222-26239.	1.0	38
54	Carbon and CNT fabricated carbon substrates for TiO 2 nanoparticles immobilization with industrial perspective of continuous photocatalytic elimination of dye molecules. Journal of Industrial and Engineering Chemistry, 2017, 55, 149-163.	5.8	35

#	Article	IF	CITATIONS
55	REMOVAL OF ACID RED 398 DYE FROM AQUEOUS SOLUTIONS BY COAGULATION/FLOCCULATION PROCESS. Environmental Engineering and Management Journal, 2008, 7, 695-699.	0.6	34
56	Synthesis, characterization and dye removal ability of high capacity polymeric adsorbent: Polyaminoimide homopolymer. Journal of Hazardous Materials, 2011, 198, 87-94.	12.4	33
57	Novel Super Adsorbent Molecules, Carbon Nanotubes Modified by Dendrimer Miniature Structure, for the Removal of Trace Organic Dyes. Industrial & Engineering Chemistry Research, 2014, 53, 14841-14853.	3.7	33
58	Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. Journal of the Textile Institute, 2015, 106, 80-89.	1.9	32
59	Thermodynamic properties of dye removal from colored textile wastewater by poly(propylene imine) dendrimer. Desalination and Water Treatment, 2015, 56, 97-106.	1.0	32
60	The effect of pH on the removal of anionic dyes from colored textile wastewater using a biosorbent. Journal of Applied Polymer Science, 2011, 120, 2996-3003.	2.6	31
61	Immobilized titania nanophotocatalysis: Degradation, modeling and toxicity reduction of agricultural pollutants. Journal of Alloys and Compounds, 2010, 506, 155-159.	5.5	29
62	Structural and electrochemical characterization of carbon electrode modified by multi-walled carbon nanotubes and surfactant. Electrochimica Acta, 2013, 112, 505-514.	5.2	29
63	Equilibrium and kinetic studies of the cationic dye removal capability of a novel biosorbent <i>Tamarindus indica</i> from textile wastewater. Coloration Technology, 2010, 126, 261-268.	1.5	28
64	Application of a biopolymer chitosan-poly(propylene)imine dendrimer hybrid as an antimicrobial agent on the wool fabrics. Iranian Polymer Journal (English Edition), 2013, 22, 931-940.	2.4	25
65	Fish Bone as a Low-Cost Adsorbent for Dye Removal from Wastewater: Response Surface Methodology and Classical Method. Environmental Modeling and Assessment, 2013, 18, 661-670.	2.2	25
66	Removal of reactive blue 19 from aqueous solution by pomegranate residual-based activated carbon: optimization by response surface methodology. Journal of Environmental Health Science & Engineering, 2014, 12, 65.	3.0	25
67	Improvement of the /Taguchi/ design optimization using artificial intelligence in three acid azo dyes removal by electrocoagulation. Environmental Progress and Sustainable Energy, 2015, 34, 1568-1575.	2.3	25
68	Application of dendrimer/titania nanohybrid for the removal of phenol from contaminated wastewater. Desalination and Water Treatment, 2016, 57, 6809-6819.	1.0	25
69	Isotherm, Kinetic, and Thermodynamic of Cationic Dye Removal from Binary System by Feldspar. Separation Science and Technology, 2012, 47, 1660-1672.	2.5	22
70	Optimization of Acid Black 172 decolorization by electrocoagulation using response surface methodology. Iranian Journal of Environmental Health Science & Engineering, 2012, 9, 23.	1.8	21
71	Ultrasonic mediated production of carboxymethyl cellulose: Optimization of conditions using response surface methodology. Carbohydrate Polymers, 2015, 134, 278-284.	10.2	21
72	Laboratory studies and CFD modeling of photocatalytic degradation of colored textile wastewater by titania nanoparticles. Desalination and Water Treatment, 2009, 1, 312-317.	1.0	20

#	Article	IF	CITATIONS
73	A novel Ag + cation sensor based on polyamidoamine dendrimer modified with 1,8-naphthalimide derivatives. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 154, 207-214.	3.9	18
74	Introduction of amine terminated dendritic structure to graphene oxide using Poly(propylene Imine) dendrimer to evaluate its organic contaminant removal. Journal of the Taiwan Institute of Chemical Engineers, 2017, 71, 285-297.	5.3	18
75	Response Surface Optimization of Acid Red 119 Dye Adsorption by Mixtures of Dried Sewage Sludge and Sewage Sludge Ash. Clean - Soil, Air, Water, 2012, 40, 652-660.	1.1	17
76	Preparation and Characterization of Chitosan/Feldspar Biohybrid as an Adsorbent: Optimization of Adsorption Process via Response Surface Modeling. Scientific World Journal, The, 2014, 2014, 1-13.	2.1	17
77	Modification of carbon nanotubes with cationic surfactant and its application for removal of direct dyes. Desalination and Water Treatment, 2014, 52, 4356-4368.	1.0	17
78	Synthesis, Characterization, and Photo-Physical Properties of Dendrimers Modified With 1,8-Naphthalimide Derivatives as Novel Fluorescent pH Sensors. IEEE Sensors Journal, 2014, 14, 2889-2896.	4.7	17
79	Antimicrobial and Dyeing studies of treated cotton fabrics by prepared Chitosan-PAMAM Dendrimer/Ag Nano-emulsion. Fibers and Polymers, 2015, 16, 2529-2537.	2.1	17
80	The potential application of tomato seeds as low-cost industrial waste in the adsorption of organic dye molecules from colored effluents. Desalination and Water Treatment, 2016, 57, 15026-15036.	1.0	17
81	Synthesis and evaluation of a series of novel monoazo disperse dyes derived from N-carboxylic acid-1,8-naphthalimide on poly(ethylene terphthalate). Fibers and Polymers, 2009, 10, 446-451.	2.1	16
82	Surface alteration of polyamide fibers by polyamidoamine dendrimers and optimization of treatment process using neural network towards improving their dyeing properties. Dyes and Pigments, 2014, 111, 30-38.	3.7	16
83	Central composite methodology for methylene blue removal by Elaeagnus angustifolia as a novel biosorbent. Journal of Environmental Chemical Engineering, 2016, 4, 1407-1416.	6.7	16
84	Purification of water containing agricultural organophosphorus pollutant using titania nanophotocatalysis: Laboratory studies and numerical modeling. Desalination, 2008, 230, 183-192.	8.2	15
85	Novel Crossâ€linked Superfine Alginateâ€Based Nanofibers: Fabrication, Characterization, and Their Use in the Adsorption of Cationic and Anionic Dyes. Advances in Polymer Technology, 2016, 35, 428-438.	1.7	15
86	Novel hydrolysable azo disperse dyes based on <i>N</i> â€esterâ€1,8â€naphthalimide: dyeing of polyester–cotton blends. Coloration Technology, 2008, 124, 295-300.	1.5	14
87	Surfactantâ€modified feldspar: Isotherm, kinetic, and thermodynamic of binary system dye removal. Journal of Applied Polymer Science, 2012, 126, 340-349.	2.6	13
88	Grafting of prepared chitosan–poly(propylene) imines dendrimer hybrid as a biopolymer onto cotton and its antimicrobial property. Journal of Industrial and Engineering Chemistry, 2015, 28, 78-85.	5.8	13
89	Removal of Disperse Blue 56 and Disperse Red 135 dyes from aqueous dispersions by modified montmorillonite nanoclay. Chemical Industry and Chemical Engineering Quarterly, 2017, 23, 21-29.	0.7	12
90	Synthesis and Characterization of Novel Monoazo Naphthalimide Disperse Dyes Containing Carboxylic Acid Group with High Heat Fastness Properties. Journal of the Chinese Chemical Society, 2008, 55, 1300-1307.	1.4	11

#	Article	IF	CITATIONS
91	Feldspar/titanium dioxide/chitosan as a biophotocatalyst hybrid for the removal of organic dyes from aquatic phases. Journal of Applied Polymer Science, 2014, 131, .	2.6	11
92	Study on dyeing and fastness properties of wool–polyester blend fabrics using novel mono azo-naphthalimide dyes. Journal of the Textile Institute, 2014, 105, 52-58.	1.9	10
93	Application of melonÂseed shell as a natural low-cost adsorbent for the removal of Methylene Blue from dye-bearing wastewaters: optimization, isotherm, kinetic, and thermodynamic. Desalination and Water Treatment, 2016, 57, 18049-18061.	1.0	10
94	Synthesis and Characterization of Novel Monoazo Nâ€Esterâ€1,8â€Naphthalimide Disperse Dyestuffs. Journal of the Chinese Chemical Society, 2007, 54, 1021-1028.	1.4	9
95	A COMPARATIVE STUDY ON REMOVAL OF FOUR TYPES OF ACID AZO DYES USING ELECTROCOAGULATION PROCESS. Environmental Engineering and Management Journal, 2014, 13, 557-564.	0.6	9
96	Improvement of electrocoagulation process on hexavalent chromium removal with the use of polyaluminum chloride as coagulant. Desalination and Water Treatment, 2014, 52, 4818-4829.	1.0	8
97	Modification of Nickel Ferrite with Cationic Surfactant: Dye Removal from Textile Wastewater Using Magnetic Separation. Journal of Environmental Engineering, ASCE, 2015, 141, .	1.4	8
98	Proteolytic enzymes reactions on wool yarn and surfactants effects on the enzyme treatment. Fibers and Polymers, 2009, 10, 611-616.	2.1	6
99	Effect of comonomer on the viscoelastic behavior of co-poly (acrylonitrile) solutions. Journal of Polymer Research, 2016, 23, 1.	2.4	6
100	Graft Copolymerization of 2-Hydroxyethyl Methacrylate (HEMA) on Persian Silk Yarn. Research Journal of Textile and Apparel, 2005, 9, 1-11.	1.1	5
101	Optimization, kinetics, equilibrium, and thermodynamic investigation of cationic dye adsorption on the fish bone. Desalination and Water Treatment, 2015, 53, 2249-2259.	1.0	5
102	Magnetization of TiO2 nanofibrous spheres by one-step ultrasonic-assisted electrochemical technique. Journal of Molecular Liquids, 2018, 265, 251-259.	4.9	4
103	Environmentally friendly sugar-based cationic surfactant as a new auxiliary in polyacrylonitrile dyeing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 552, 103-109.	4.7	4
104	Synthesis of an ionic sugar-amino acid based surfactant in aqueous media. Journal of Molecular Liquids, 2020, 318, 114269.	4.9	3
105	OPTIMIZATION OF THE COMBINED UV/ELECTROCOAGULATION PROCESS FOR DYE REMOVAL FROM TEXTILE WASTEWATER USING RESPONSE SURFACE METHODOLOGY. Environmental Engineering and Management Journal, 2016, 15, 189-198.	0.6	0
106	OPTIMIZATION OF THE COMBINED UV/ELECTROCOAGULATION PROCESS FOR DYE REMOVAL FROM TEXTILE WASTEWATER USING RESPONSE SURFACE METHODOLOGY. Environmental Engineering and Management Journal, 2016, 15, 189-198.	0.6	0