

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10816531/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chemical Engineering Journal, 2022, 428, 131112.	12.7	29
2	Low oordinated CoNC on Oxygenated Graphene for Efficient Electrocatalytic H ₂ O ₂ Production. Advanced Functional Materials, 2022, 32, 2106886.	14.9	97
3	Engineering the Morphology and Microenvironment of a Grapheneâ€Supported Coâ€Nâ€C Singleâ€Atom Electrocatalyst for Enhanced Hydrogen Evolution. Small, 2022, 18, e2201139.	10.0	36
4	Fe, V-co-doped C2N for electrocatalytic N2-to-NH3 conversion. Journal of Energy Chemistry, 2021, 53, 303-308.	12.9	55
5	2021 Roadmap: electrocatalysts for green catalytic processes. JPhys Materials, 2021, 4, 022004.	4.2	57
6	Coupling Glucoseâ€Assisted Cu(I)/Cu(II) Redox with Electrochemical Hydrogen Production. Advanced Materials, 2021, 33, e2104791.	21.0	126
7	Precise tuning of heteroatom positions in polycyclic aromatic hydrocarbons for electrocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2020, 580, 623-629.	9.4	4
8	Co-doped graphene edge for enhanced N2-to-NH3 conversion. Journal of Energy Chemistry, 2020, 48, 322-327.	12.9	40
9	Metal oxide/graphene composite anode materials for sodium-ion batteries. Energy Storage Materials, 2019, 16, 434-454.	18.0	156
10	Zn-Doped Cu(100) facet with efficient catalytic ability for the CO ₂ electroreduction to ethylene. Physical Chemistry Chemical Physics, 2019, 21, 21341-21348.	2.8	25
11	Porous Nb ₄ N ₅ /rGO Nanocomposite for Ultrahigh-Energy-Density Lithium-Ion Hybrid Capacitor. ACS Applied Materials & Interfaces, 2019, 11, 24114-24121.	8.0	31
12	Electron distribution tuning of fluorine-doped carbon for ammonia electrosynthesis. Journal of Materials Chemistry A, 2019, 7, 16979-16983.	10.3	46
13	Enhanced open-circuit photovoltage and charge collection realized in pearl-like NiO/CuO composite nanowires based p-type dye sensitized solar cells. Materials Research Bulletin, 2019, 116, 131-136.	5.2	26
14	Transition Metalâ€dinitrogen Complex Embedded Graphene for Nitrogen Reduction Reaction. ChemCatChem, 2019, 11, 2821-2827.	3.7	68
15	Sodium-based batteries: from critical materials to battery systems. Journal of Materials Chemistry A, 2019, 7, 9406-9431.	10.3	199
16	2020 roadmap on pore materials for energy and environmental applications. Chinese Chemical Letters, 2019, 30, 2110-2122.	9.0	75
17	Electrochemical CO2 reduction over nitrogen-doped SnO2 crystal surfaces. Journal of Energy Chemistry, 2019, 33, 22-30.	12.9	38
18	Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: Beyond MoS2. Journal of Energy Chemistry, 2019, 33, 100-124.	12.9	174

Zengxi Wei

#	Article	IF	CITATIONS
19	A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chemical Engineering Journal, 2019, 359, 1668-1676.	12.7	25
20	Strain engineering the D-band center for Janus MoSSe edge: Nitrogen fixation. Journal of Energy Chemistry, 2019, 33, 155-159.	12.9	32
21	Robust pseudo-capacitive Li-12 battery enabled by catalytic, adsorptive N-doped graphene interlayer. Energy Storage Materials, 2018, 14, 129-135.	18.0	67
22	Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc–Air Batteries. Small, 2018, 14, e1800737.	10.0	159
23	Research progress on vanadium-based cathode materials for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 8815-8838.	10.3	161
24	Oxygen-deficient anatase TiO ₂ @C nanospindles with pseudocapacitive contribution for enhancing lithium storage. Journal of Materials Chemistry A, 2018, 6, 4013-4022.	10.3	206
25	Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 10918-10925.	10.3	199
26	Three-dimensional carbon frameworks enabling MoS2 as anode for dual ion batteries with superior sodium storage properties. Energy Storage Materials, 2018, 15, 22-30.	18.0	125
27	Quasi-reversible conversion reaction of CoSe ₂ /nitrogen-doped carbon nanofibers towards long-lifetime anode materials for sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 7088-7098.	10.3	117
28	Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries. Nano-Micro Letters, 2018, 10, 21.	27.0	141
29	Bioinspired Micro/Nanofluidic Ion Transport Channels for Organic Cathodes in Highâ€Rate and Ultrastable Lithium/Sodium″on Batteries. Advanced Functional Materials, 2018, 28, 1804629.	14.9	69
30	Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chinese Chemical Letters, 2018, 29, 1785-1790.	9.0	56
31	Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. Journal of Materials Chemistry A, 2018, 6, 12185-12214.	10.3	245
32	Boron-Doped Graphene for Electrocatalytic N2 Reduction. Joule, 2018, 2, 1610-1622.	24.0	774
33	Vacancy-induced sodium-ion storage in N-doped carbon Nanofiber@MoS2 nanosheet arrays. Electrochimica Acta, 2018, 285, 301-308.	5.2	111
34	Fe-doped phosphorene for the nitrogen reduction reaction. Journal of Materials Chemistry A, 2018, 6, 13790-13796.	10.3	144
35	Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)â€lon Batteries. Advanced Science, 2017, 4, 1700146.	11.2	390
36	Atomically Thin Transitionâ€Metal Dichalcogenides for Electrocatalysis and Energy Storage. Small Methods, 2017, 1, 1700156.	8.6	98

#	Article	IF	CITATIONS
37	Chevrel Phase Mo ₆ T ₈ (T = S, Se) as Electrodes for Advanced Energy Storage. Small, 2017, 13, 1701441.	10.0	61