List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1081651/publications.pdf Version: 2024-02-01

HONCYANLL

#	Article	IF	CITATIONS
1	Celiac Disease and Immunogenic Wheat Gluten Peptides and the Association of Gliadin Peptides with HLA DQ2 and HLA DQ8. Food Reviews International, 2022, 38, 1553-1576.	8.4	3
2	The utilization of oat for the production of wholegrain foods: Processing technology and products. Food Frontiers, 2022, 3, 28-45.	7.4	12
3	Effect of starch molecular structure on precision and texture properties of 3D printed products. Food Hydrocolloids, 2022, 125, 107387.	10.7	39
4	Effects of flat sweep frequency and pulsed ultrasound on the activity, conformation and microstructure of mushroom polyphenol oxidase. Ultrasonics Sonochemistry, 2022, 82, 105908.	8.2	17
5	Effect of Coptis chinensis franch and Magnolia officinalis on intestinal flora and intestinal barrier in a TNBS-induced ulcerative colitis rats model. Phytomedicine, 2022, 97, 153927.	5.3	43
6	Effects of Processing on Starch Structure, Textural, and Digestive Property of "Horisenbadaâ€, a Traditional Mongolian Food. Foods, 2022, 11, 212.	4.3	1
7	The Progress of Nomenclature, Structure, Metabolism, and Bioactivities of Oat Novel Phytochemical: Avenanthramides. Journal of Agricultural and Food Chemistry, 2022, 70, 446-457.	5.2	21
8	The promoted hydrolysis effect of cellulase with ultrasound treatment is reflected on the sonicated rather than native brown rice. Ultrasonics Sonochemistry, 2022, 83, 105920.	8.2	13
9	Investigation of the mechanism of casein protein to enhance 3D printing accuracy of cassava starch gel. Carbohydrate Polymers, 2022, 295, 119827.	10.2	28
10	Effect of alkyl chain length and amylose/amylopectin ratio on the structure and digestibility of starch-alkylresorcinols inclusion complexes. Food Hydrocolloids, 2022, 133, 107900.	10.7	9
11	Osthole ameliorates cognitive impairments via augmenting neuronal population in APP / PS1 transgenic mice. Neuroscience Research, 2021, 164, 33-45.	1.9	13
12	Degradation mechanism of amylopectin under ultrasonic irradiation. Food Hydrocolloids, 2021, 111, 106371.	10.7	13
13	Effect of multi-mode dual-frequency ultrasound irradiation on the degradation of waxy corn starch in a gelatinized state. Food Hydrocolloids, 2021, 113, 106440.	10.7	53
14	Effect of alkylresorcinols on the formation of Nεâ€(carboxymethyl)lysine and sensory profile of wheat bread. Food Science and Nutrition, 2021, 9, 489-498.	3.4	6
15	Starch gelatinization in the surface layer of rice grains is crucial in reducing the stickiness of parboiled rice. Food Chemistry, 2021, 341, 128202.	8.2	48
16	Effects of the degree of milling on starch leaching characteristics and its relation to rice stickiness. Journal of Cereal Science, 2021, 98, 103163.	3.7	19
17	Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Frontiers in Pharmacology, 2021, 12, 606682.	3.5	19
18	Molecular structure of different prepared pyrodextrins and the inhibitory effects on starch retrogradation. Food Research International, 2021, 143, 110305.	6.2	10

#	Article	IF	CITATIONS
19	Degradation of aflatoxin B1 by a recombinant laccase from Trametes sp. C30 expressed in Saccharomyces cerevisiae: A mechanism assessment study in vitro and in vivo. Food Research International, 2021, 145, 110418.	6.2	29
20	Structural comparisons of pyrodextrins during thermal degradation process: The role of hydrochloric acid. Food Chemistry, 2021, 349, 129174.	8.2	19
21	Molecular Mechanism for the α-Glucosidase Inhibitory Effect of Wheat Germ Peptides. Journal of Agricultural and Food Chemistry, 2021, 69, 15231-15239.	5.2	31
22	Insights into maize starch degradation by sulfuric acid from molecular structure changes. Carbohydrate Polymers, 2020, 229, 115542.	10.2	17
23	Effect of dry heating treatment on multi-levels of structure and physicochemical properties of maize starch: A thermodynamic study. International Journal of Biological Macromolecules, 2020, 147, 109-116.	7.5	51
24	Structural modification and functional improvement of starch nanoparticles using vacuum cold plasma. International Journal of Biological Macromolecules, 2020, 145, 197-206.	7.5	33
25	Novel Heterostructure of a MXene@NiFe-LDH Nanohybrid with Superior Peroxidase-Like Activity for Sensitive Colorimetric Detection of Glutathione. ACS Sustainable Chemistry and Engineering, 2020, 8, 520-526.	6.7	77
26	Neuroprotection of benzoinum in cerebral ischemia model rats via the ACE-AngI-VEGF pathway. Life Sciences, 2020, 260, 118418.	4.3	8
27	Animal models of cerebral ischemia: A review. Biomedicine and Pharmacotherapy, 2020, 131, 110686.	5.6	53
28	Insights into waxy maize starch degradation by sulfuric acid: Impact on starch structure, pasting, and rheological property. International Journal of Biological Macromolecules, 2020, 165, 214-221.	7.5	9
29	Prebiotic, Probiotic, Antimicrobial, and Functional Food Applications of <i>Bacillus amyloliquefaciens</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 14709-14727.	5.2	68
30	High-pressure homogenization thinned starch paste and its application in improving the stickiness of cooked non-glutinous rice. LWT - Food Science and Technology, 2020, 131, 109750.	5.2	21
31	Structural and physicochemical property changes during pyroconversion of native maize starch. Carbohydrate Polymers, 2020, 245, 116560.	10.2	10
32	Insights into maize starch degradation by high pressure homogenization treatment from molecular structure aspect. International Journal of Biological Macromolecules, 2020, 161, 72-77.	7.5	12
33	Promotion effect of Zn on 2D bimetallic NiZn metal organic framework nanosheets for tyrosinase immobilization and ultrasensitive detection of phenol. Analytica Chimica Acta, 2020, 1127, 131-139.	5.4	37
34	Functional Characteristics of Lactobacillus and Yeast Single Starter Cultures in the Ripening Process of Dry Fermented Sausage. Frontiers in Microbiology, 2020, 11, 611260.	3.5	21
35	Shenzao jiannao oral liquid, an herbal formula, ameliorates cognitive impairments by rescuing neuronal death and triggering endogenous neurogenesis in AD-like mice induced by a combination of Aβ42 and scopolamine. Journal of Ethnopharmacology, 2020, 259, 112957.	4.1	20
36	Washing rice before cooking has no large effect on the texture of cooked rice. Food Chemistry, 2019, 271, 388-392.	8.2	42

#	Article	IF	CITATIONS
37	Molecular causes for the effect of cooking methods on rice stickiness: A mechanism explanation from the view of starch leaching. International Journal of Biological Macromolecules, 2019, 128, 49-53.	7.5	23
38	The increased stickiness of non-glutinous rice by alkali soaking and its molecular causes. International Journal of Biological Macromolecules, 2019, 135, 394-399.	7.5	9
39	Molecular causes for the increased stickiness of cooked non-glutinous rice by enzymatic hydrolysis of the grain surface protein. Carbohydrate Polymers, 2019, 216, 197-203.	10.2	31
40	The importance of amylopectin molecular size in determining the viscoelasticity of rice starch gels. Carbohydrate Polymers, 2019, 212, 112-118.	10.2	29
41	Effects of variety and growth location on the chain-length distribution of rice starches. Journal of Cereal Science, 2019, 85, 77-83.	3.7	17
42	Characterizing Starch Molecular Structure of Rice. Methods in Molecular Biology, 2019, 1892, 169-185.	0.9	4
43	Autoclaved rice: The textural property and its relation to starch leaching and the molecular structure of leached starch. Food Chemistry, 2019, 283, 199-205.	8.2	24
44	Starch molecular structure: The basis for an improved understanding of cooked rice texture. Carbohydrate Polymers, 2018, 195, 9-17.	10.2	182
45	Relations between chain-length distribution, molecular size, and amylose content of rice starches. International Journal of Biological Macromolecules, 2018, 120, 2017-2025.	7.5	34
46	The molecular structural features controlling stickiness in cooked rice, a major palatability determinant. Scientific Reports, 2017, 7, 43713.	3.3	101
47	The molecular structures of leached starch during rice cooking are controlled by thermodynamic effects, rather than kinetic effects. Food Hydrocolloids, 2017, 73, 295-299.	10.7	54
48	Instrumental measurement of cooked rice texture by dynamic rheological testing and its relation to the fine structure of rice starch. Carbohydrate Polymers, 2016, 146, 253-263.	10.2	108
49	The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chemistry, 2016, 196, 702-711.	8.2	363
50	Effect of freezeâ€ŧhawing treatment on the microstructure and thermal properties of nonâ€waxy corn starch granule. Starch/Staerke, 2015, 67, 989-1001.	2.1	26
51	Impact of High-Shear Extrusion Combined With Enzymatic Hydrolysis on Rice Properties and Chinese Rice Wine Fermentation. Food and Bioprocess Technology, 2015, 8, 589-604.	4.7	43
52	Molecular characterization and in vitro digestibility of normal maize starch hydrolyzed by maltotriohydrolase. International Journal of Biological Macromolecules, 2015, 74, 283-288.	7.5	7
53	Discrimination of Chinese rice wines of different geographical origins by UV-vis spectroscopy and chemometrics. Journal of the Institute of Brewing, 2015, 121, 167-174.	2.3	18
54	Preparation, characterization, and in vitro release of carboxymethyl starch/β-cyclodextrin microgel–ascorbic acid inclusion complexes. RSC Advances, 2015, 5, 61815-61820.	3.6	18

#	Article	IF	CITATIONS
55	Thermal degradation behavior of hypochlorite-oxidized starch nanocrystals under different oxidized levels. Carbohydrate Polymers, 2015, 124, 124-130.	10.2	35
56	Long-term annealing of C-type kudzu starch: Effect on crystalline type and other physicochemical properties. Starch/Staerke, 2015, 67, 577-584.	2.1	27
57	Effect of pHs on dispersity of maize starch nanocrystals in aqueous medium. Food Hydrocolloids, 2014, 36, 369-373.	10.7	77
58	Characterization and mechanism of action of Microbacterium imperiale glucan 1,4-α-maltotriohydrolase. Carbohydrate Research, 2014, 384, 46-50.	2.3	13
59	Modelling and optimisation of enzymatic extrusion pretreatment of broken rice for rice wine manufacture. Food Chemistry, 2014, 150, 94-98.	8.2	19
60	Effect of defatting on acid hydrolysis rate of maize starch with different amylose contents. International Journal of Biological Macromolecules, 2013, 62, 652-656.	7.5	31
61	Impact of α-amylase combined with hydrochloric acid hydrolysis on structure and digestion of waxy rice starch. International Journal of Biological Macromolecules, 2013, 55, 276-281.	7.5	17
62	Porous starch extracted from Chinese rice wine vinasse: Characterization and adsorption properties. International Journal of Biological Macromolecules, 2013, 61, 156-159.	7.5	24
63	Simultaneous saccharification and fermentation of broken rice: an enzymatic extrusion liquefaction pretreatment for Chinese rice wine production. Bioprocess and Biosystems Engineering, 2013, 36, 1141-1148.	3.4	58