Lingyan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10814907/publications.pdf Version: 2024-02-01

LINCVANL

#	Article	IF	CITATIONS
1	Two-Dimensional Metal Organic Framework Nanosheets as Bifunctional Catalyst for Electrochemical and Photoelectrochemical Water Oxidation. Frontiers in Chemistry, 2020, 8, 604239.	1.8	12
2	Salt-responsive polyzwitterionic materials for surface regeneration between switchable fouling and antifouling properties. Acta Biomaterialia, 2016, 40, 62-69.	4.1	74
3	Free-Standing Two-Dimensional Ru Nanosheets with High Activity toward Water Splitting. ACS Catalysis, 2016, 6, 1487-1492.	5.5	276
4	Probing the weak interaction of proteins with neutral and zwitterionic antifouling polymers. Acta Biomaterialia, 2014, 10, 751-760.	4.1	68
5	Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution. Journal of Materials Chemistry B, 2014, 2, 2983.	2.9	149
6	Probing structure–antifouling activity relationships of polyacrylamides and polyacrylates. Biomaterials, 2013, 34, 4714-4724.	5.7	77
7	Antifouling and biodegradable poly(N-hydroxyethyl acrylamide) (polyHEAA)-based nanogels. RSC Advances, 2013, 3, 19991.	1.7	37
8	Effects of Pressure and Electrical Charge on Macromolecular Transport Across Bovine Lens Basement Membrane. Biophysical Journal, 2013, 104, 1476-1484.	0.2	17
9	Dual Functionality of Antimicrobial and Antifouling of Poly(<i>N</i> -hydroxyethylacrylamide)/Salicylate Hydrogels. Langmuir, 2013, 29, 1517-1524.	1.6	95
10	Synthesis and characterization of pH-sensitive poly(N-2-hydroxyethyl acrylamide)–acrylic acid (poly(HEAA/AA)) nanogels with antifouling protection for controlled release. Soft Matter, 2012, 8, 7848.	1.2	81
11	Strong resistance of poly (ethylene glycol) based <scp>L</scp> â€ŧyrosine polyurethanes to protein adsorption and cell adhesion. Polymer International, 2012, 61, 616-621.	1.6	28
12	Anti-biofouling Sulfobetaine Polymer Thin Films on Silicon and Silicon Nanopore Membranes. Journal of Biomaterials Science, Polymer Edition, 2011, 22, 91-106.	1.9	47
13	Effect of Film Thickness on the Antifouling Performance of Poly(hydroxy-functional methacrylates) Grafted Surfaces. Langmuir, 2011, 27, 4906-4913.	1.6	201
14	Structural, morphological, and kinetic studies of Î ² -amyloid peptide aggregation on self-assembled monolayers. Physical Chemistry Chemical Physics, 2011, 13, 15200.	1.3	96
15	Hemocompatibility of Silicon-Based Substrates for Biomedical Implant Applications. Annals of Biomedical Engineering, 2011, 39, 1296-1305.	1.3	62
16	Basal lamina secreted by MDCK cells has size- and charge-selective properties. American Journal of Physiology - Renal Physiology, 2011, 300, F86-F90.	1.3	15
17	Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010, 51, 5283-5293.	1.8	1,370
18	Molecular conformation and filtration properties of anionic Ficoll. American Journal of Physiology - Renal Physiology, 2010, 299, F752-F757.	1.3	17

Lingyan Li

#	Article	IF	CITATIONS
19	Achieving Highly Effective Nonfouling Performance for Surface-Grafted Poly(HPMA) via Atom-Transfer Radical Polymerization. Langmuir, 2010, 26, 17375-17382.	1.6	92
20	Alzheimer Al² _{1â^'42} Monomer Adsorbed on the Self-Assembled Monolayers. Langmuir, 2010, 26, 12722-12732.	1.6	39
21	Protein interactions with oligo(ethylene glycol) (OEG) self-assembled monolayers: OEG stability, surface packing density and protein adsorption. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 1415-1427.	1.9	170
22	Molecular simulation studies of the structure of phosphorylcholine self-assembled monolayers. Journal of Chemical Physics, 2006, 125, 174714.	1.2	41
23	Strong Resistance of Phosphorylcholine Self-Assembled Monolayers to Protein Adsorption:Â Insights into Nonfouling Properties of Zwitterionic Materials. Journal of the American Chemical Society, 2005, 127, 14473-14478.	6.6	918
24	Improved Method for the Preparation of Carboxylic Acid and Amine Terminated Self-Assembled Monolayers of Alkanethiolates. Langmuir, 2005, 21, 2633-2636.	1.6	230
25	Protein Adsorption on Oligo(ethylene glycol)-Terminated Alkanethiolate Self-Assembled Monolayers:Â The Molecular Basis for Nonfouling Behavior. Journal of Physical Chemistry B, 2005, 109, 2934-2941.	1.2	461
26	Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophysical Journal, 2005, 89, 158-166.	0.2	310
27	Molecular Simulation Study of Water Interactions with Oligo (Ethylene Glycol)-Terminated Alkanethiol Self-Assembled Monolayers. Langmuir, 2004, 20, 8931-8938.	1.6	270
28	Protein Adsorption on Alkanethiolate Self-Assembled Monolayers:Â Nanoscale Surface Structural and Chemical Effects. Langmuir, 2003, 19, 2974-2982.	1.6	78
29	Nanoscale Frictional Properties of Mixed Alkanethiol Self-Assembled Monolayers on Au(111) by Scanning Force Microscopy:Â Humidity Effect. Langmuir, 2003, 19, 666-671.	1.6	25
30	Molecular-Scale Mixed Alkanethiol Monolayers of Different Terminal Groups on Au(111) by Low-Current Scanning Tunneling Microscopy. Langmuir, 2003, 19, 3266-3271.	1.6	58
31	Measurements of Friction and Adhesion for Alkyl Monolayers on Si(111) by Scanning Force Microscopy. Langmuir, 2002, 18, 5448-5456.	1.6	51
32	In Situ Single-Molecule Detection of Antibodyâ^'Antigen Binding by Tapping-Mode Atomic Force Microscopy. Analytical Chemistry, 2002, 74, 6017-6022.	3.2	52
33	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers by Coadsorption of Symmetric and Asymmetric Disulfides on Au(111). Journal of Physical Chemistry B, 2001, 105, 2975-2980.	1.2	69
34	Nanoscale Frictional Properties of Pure and Mixed Alkanethiols on Au(111) by Scanning Force Microscopy. ACS Symposium Series, 2000, , 168-177.	0.5	0
35	Controlled Chemical and Structural Properties of Mixed Self-Assembled Monolayers of Alkanethiols on Au(111). Langmuir, 2000, 16, 9287-9293.	1.6	133
36	Quantitative Measurements of Frictional Properties ofn-Alkanethiols on Au(111) by Scanning Force Microscopy. Journal of Physical Chemistry B, 1999, 103, 8290-8295.	1.2	34