Steven W Effler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1081359/publications.pdf Version: 2024-02-01

STEVEN W/ FEELED

#	Article	IF	CITATIONS
1	Pairing paleolimnological inference models with mechanistic water column models enhances assessment of lake water quality. Journal of Paleolimnology, 2017, 58, 119-133.	0.8	0
2	Characterizations of calcite particles and evaluations of their light scattering effects in lacustrine systems. Limnology and Oceanography, 2017, 62, 645-664.	1.6	6
3	A Mechanistic Model for Secchi Disk Depth, Driven by Light Scattering Constituents. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	4
4	Topographic wetness guided dairy manure applications to reduce stream nutrient loads in Central New York, USA. Journal of Hydrology: Regional Studies, 2017, 14, 67-82.	1.0	9
5	Apportionment of bioavailable phosphorus loads entering Cayuga Lake, New York. Journal of the American Water Resources Association, 2016, 52, 31-47.	1.0	21
6	Simulation of the Contribution of Phosphorus-Containing Minerogenic Particles to Particulate Phosphorus Concentration in Cayuga Lake, New York. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	1
7	Simulation of Terrigenous Minerogenic Particle Populations in Time and Space in Cayuga Lake, New York, in Response to Runoff Events. Water, Air, and Soil Pollution, 2016, 227, 1.	1.1	2
8	Quantitative paleolimnological inference models applied to a high-resolution biostratigraphic study of lake degradation and recovery, Onondaga Lake, New York (USA). Journal of Paleolimnology, 2016, 55, 241-258.	0.8	4
9	Advancing twoâ€component partitioning of light scattering in <scp>C</scp> ayuga <scp>L</scp> ake, <scp>N</scp> ew <scp>Y</scp> ork. Limnology and Oceanography, 2016, 61, 298-315.	1.6	6
10	Daphnia grazing, the clear water phase, and implications of minerogenic particles in Onondaga Lake. Inland Waters, 2015, 5, 317-330.	1.1	6
11	Light-absorbing properties of mineral particles in the Great Lakes. Journal of Great Lakes Research, 2015, 41, 573-583.	0.8	3
12	Testing and application of a two-dimensional hydrothermal/transport model for a long, deep, and narrow lake with moderate Burger number. Inland Waters, 2015, 5, 387-402.	1.1	10
13	Trophic state responses of Onondaga Lake, New York to reductions in phopshorus loading from advanced wastewater treatment. Inland Waters, 2015, 5, 125-138.	1.1	8
14	Quantifications and water quality implications of minerogenic particles in Cayuga Lake, New York, and its tributaries. Inland Waters, 2015, 5, 403-420.	1.1	5
15	Zooplankton Community Changes Confound the Biodilution Theory of Methylmercury Accumulation in a Recovering Mercury-Contaminated Lake. Environmental Science & Technology, 2015, 49, 4066-4071.	4.6	24
16	Partitioning the contributions of minerogenic particles and bioseston to particulate phosphorus and turbidity. Inland Waters, 2014, 4, 179-192.	1.1	13
17	Robotic Monitoring for Turbidity Management in Multiple Reservoir Water Supply. Journal of Water Resources Planning and Management - ASCE, 2014, 140, .	1.3	2
18	Changes in the long-term supply of mercury species to the upper mixed waters of a recovering lake. Environmental Pollution, 2014, 185, 314-321.	3.7	11

#	Article	IF	CITATIONS
19	Long-term study of minerogenic particle optics in Cayuga Lake, New York. Limnology and Oceanography, 2014, 59, 325-339.	1.6	12
20	Whole-lake nitrate addition for control of methylmercury in mercury-contaminated Onondaga Lake, NY. Environmental Research, 2013, 125, 52-60.	3.7	68
21	Remote sensing reflectance in the Great Lakes: In situ measurements, closure analyses, and a forward model. Journal of Great Lakes Research, 2013, 39, 137-150.	0.8	8
22	Inherent optical properties of suspended particulates in four temperate lakes: application of in situ spectroscopy. Hydrobiologia, 2013, 713, 127-148.	1.0	9
23	Light-absorbing components in the Great Lakes. Journal of Great Lakes Research, 2013, 39, 123-136.	0.8	14
24	Resolution of optical gradients and pursuit of optical closure for Green Bay, Lake Michigan. Journal of Great Lakes Research, 2013, 39, 161-172.	0.8	11
25	Optical characterization of Lake Champlain: Spatial heterogeneity and closure. Journal of Great Lakes Research, 2013, 39, 247-258.	0.8	5
26	The backscattering coefficient and its components in the Great Lakes: A review and synthesis. Journal of Great Lakes Research, 2013, 39, 108-122.	0.8	22
27	Evaluation and optimization of bioâ€optical inversion algorithms for remote sensing of Lake Superior's optical properties. Journal of Geophysical Research: Oceans, 2013, 118, 1696-1714.	1.0	28
28	Retrospective Analyses of Inputs of Municipal Wastewater Effluent and Coupled Impacts on an Urban Lake. Water Environment Research, 2013, 85, 13-26.	1.3	11
29	Modeling Effects of Sediment Diagenesis on Recovery of Hypolimnetic Oxygen. Journal of Environmental Engineering, ASCE, 2013, 139, 44-53.	0.7	11
30	Characterizations and modeling of turbidity in a water supply reservoir following an extreme runoff event. Inland Waters, 2013, 3, 377-390.	1.1	15
31	Spectral absorption properties of mineral particles in western Lake Erie: Insights from individual particle analysis. Limnology and Oceanography, 2013, 58, 1775-1789.	1.6	14
32	Factors Diminishing the Effectiveness of Phosphorus Loading from Municipal Effluent: Critical Information for TMDL Analyses. Water Environment Research, 2012, 84, 254-264.	1.3	16
33	Modeling Turbidity and the Effects of Alum Application for a Water Supply Reservoir. Journal of Environmental Engineering, ASCE, 2012, 138, 38-47.	0.7	11
34	Light-scattering components and Secchi depth implications in Onondaga Lake, New York, USA. Fundamental and Applied Limnology, 2012, 179, 251-265.	0.4	18
35	Ecosystem Effects of a Tropical Cyclone on a Network of Lakes in Northeastern North America. Environmental Science & Technology, 2012, 46, 11693-11701.	4.6	93
36	Calibration and application of a sediment accumulation rate model – a case study. Inland Waters, 2012, 2, 23-36.	1.1	7

#	Article	IF	CITATIONS
37	Sources and Sinks of Phosphorus for a Perturbed Stream and the Effects of Mineral Deposits ¹ . Journal of the American Water Resources Association, 2012, 48, 321-335.	1.0	3
38	Testing and Application of a Transport Model for Runoff Event Inputs for a Water Supply Reservoir. Journal of Environmental Engineering, ASCE, 2011, 137, 678-688.	0.7	8
39	Characterizations of the light-scattering attributes of mineral particles in Lake Ontario and the effects of whiting. Journal of Great Lakes Research, 2011, 37, 672-682.	0.8	27
40	Modeling Resuspension in a Dynamic Water Supply Reservoir. Journal of Environmental Engineering, ASCE, 2011, 137, 585-595.	0.7	3
41	Light Absorption Components in Onondaga Lake, New York, U.S.A Fundamental and Applied Limnology, 2010, 176, 209-223.	0.4	11
42	Tripton, trophic state metrics, and near-shore versus pelagic zone responses to external loads in Cayuga Lake, New York, U.S.A Fundamental and Applied Limnology, 2010, 178, 1-15.	0.4	18
43	A retrospective analysis of suspended solids deposition in Onondaga Lake, New York: Composition, temporal patterns, and drivers. Lake and Reservoir Management, 2010, 26, 43-53.	0.4	6
44	Variations in the Stratification Regime of Onondaga Lake: Patterns, Modeling, and Implications. Fundamental and Applied Limnology, 2010, 176, 11-27.	0.4	14
45	The Effect of Municipal Wastewater Effluent on Nitrogen Levels in Onondaga Lake, a 36‥ear Record. Water Environment Research, 2010, 82, 3-19.	1.3	13
46	Anthropogenic impacts recorded in recent sediments from Otisco Lake, New York, USA. Journal of Paleolimnology, 2010, 43, 449-462.	0.8	13
47	Light-absorbing components in Lake Superior. Journal of Great Lakes Research, 2010, 36, 656-665.	0.8	36
48	Characterizations of individual suspended mineral particles in western Lake Erie: Implications for light scattering and water clarity. Journal of Great Lakes Research, 2010, 36, 686-698.	0.8	35
49	Optical characterizations and pursuit of optical closure for the western basin of Lake Erie through in situ measurements. Journal of Great Lakes Research, 2010, 36, 736-746.	0.8	37
50	Turbidity Model for Ashokan Reservoir, New York: Case Study. Journal of Environmental Engineering, ASCE, 2009, 135, 885-895.	0.7	28
51	Resuspension of Mercury-Contaminated Sediments from an In-Lake Industrial Waste Deposit. Journal of Environmental Engineering, ASCE, 2009, 135, 526-534.	0.7	14
52	Effects of Discharge of Spent Cooling Water from an Oligotrophic Lake to a Polluted Eutrophic Lake. Journal of Water Resources Planning and Management - ASCE, 2009, 135, 96-106.	1.3	2
53	Tributary Plunging in an Urban Lake (Onondaga Lake): Drivers, Signatures, and Implications ¹ . Journal of the American Water Resources Association, 2009, 45, 1127-1141.	1.0	19
54	Light-scattering features of turbidity-causing particles in interconnected reservoir basins and a connecting stream. Water Research, 2009, 43, 2280-2292.	5.3	26

#	Article	IF	CITATIONS
55	Evidence for Regulation of Monomethyl Mercury by Nitrate in a Seasonally Stratified, Eutrophic Lake. Environmental Science & Technology, 2009, 43, 6572-6578.	4.6	73
56	MERIS satellite chlorophyll mapping of oligotrophic and eutrophic waters in the Laurentian Great Lakes. Remote Sensing of Environment, 2008, 112, 4098-4106.	4.6	181
57	Local to regional emission sources affecting mercury fluxes to New York lakesâ~†. Atmospheric Environment, 2008, 42, 6088-6097.	1.9	28
58	Probabilistic model for temperature and turbidity in a reservoir withdrawal. Lake and Reservoir Management, 2008, 24, 219-230.	0.4	7
59	Turbidity and temperature patterns in a reservoir and its primary tributary from robotic monitoring: Implications for managing the quality of withdrawals. Lake and Reservoir Management, 2008, 24, 231-243.	0.4	8
60	Insights for the structure of a reservoir turbidity model from monitoring and process studies. Lake and Reservoir Management, 2008, 24, 69-86.	0.4	12
61	Implications of redox processes for the rehabilitation of an urban lake, Onondaga Lake, New York. Lake and Reservoir Management, 2008, 24, 122-138.	0.4	23
62	Patterns and modeling of the long-term optics record of Onondaga Lake, New York. Fundamental and Applied Limnology, 2008, 172, 217-237.	0.4	26
63	Decreases in primary production in Onondaga Lake from reductions in point source inputs of phosphorus. Fundamental and Applied Limnology, 2008, 172, 239-253.	0.4	25
64	Testing and application of a two-dimensional hydrothermal model for a water supply reservoir: implications of sedimentation. Journal of Environmental Engineering and Science, 2007, 6, 73-84.	0.3	21
65	Suspended minerogenic particles in a reservoir: Lightâ€scattering features from individual particle analysis. Limnology and Oceanography, 2007, 52, 204-216.	1.6	44
66	Turbidity and suspended solids levels and loads in a sediment enriched stream: implications for impacted lotic and lentic ecosystems. Lake and Reservoir Management, 2007, 23, 231-244.	0.4	31
67	Size Distributions and Light Scattering Features of Minerogenic Particles in a Stream during Runoff Events. Journal of Environmental Engineering, ASCE, 2007, 133, 931-940.	0.7	6
68	Role of minerogenic particles in light scattering in lakes and a river in central New York. Applied Optics, 2007, 46, 6577.	2.1	39
69	Comparison of an Urban Lake Targeted for Rehabilitation and a Reference Lake Based on Robotic Monitoring. Lake and Reservoir Management, 2007, 23, 11-26.	0.4	13
70	Modeling Turbidity in a Water Supply Reservoir: Advancements and Issues. Journal of Environmental Engineering, ASCE, 2007, 133, 139-148.	0.7	40
71	Assessment of Long-term Trends in the Oxygen Resources of a Recovering Urban Lake, Onondaga Lake, New York. Lake and Reservoir Management, 2006, 22, 19-32.	0.4	39
72	Use of Robotic Monitoring to Assess Turbidity Patterns in Onondaga Lake, NY. Lake and Reservoir Management, 2006, 22, 199-212.	0.4	7

#	Article	IF	CITATIONS
73	RUNOFF EVENT IMPACTS ON A WATER SUPPLY RESERVOIR: SUSPENDED SEDIMENT LOADING, TURBID PLUME BEHAVIOR, AND SEDIMENT DEPOSITION ¹ . Journal of the American Water Resources Association, 2006, 42, 1697-1710.	1.0	26
74	Resolution of Turbidity Patterns from Runoff Events in a Water Supply Reservoir, and the Advantages ofIn SituBeam Attenuation Measurements. Lake and Reservoir Management, 2006, 22, 79-93.	0.4	21
75	Inorganic tripton in the Finger Lakes of New York: importance to optical characteristics. Hydrobiologia, 2005, 543, 259-277.	1.0	22
76	Long-term trends in methane flux from the sediments of Onondaga Lake, NY: Sediment diagenesis and impacts on dissolved oxygen resources. Archiv Für Hydrobiologie, 2005, 163, 435-462.	1.1	21
77	Changes in Primary Production in Onondaga Lake, NY: Magnitude, Metrics, and Drivers. Lake and Reservoir Management, 2005, 21, 49-60.	0.4	14
78	SEDIMENT RESUSPENSION AND DRAWDOWN IN A WATER SUPPLY RESERVOIR. Journal of the American Water Resources Association, 2004, 40, 251-264.	1.0	27
79	CHARACTERIZATION OF INORGANIC PARTICLES IN SELECTED RESERVOIRS AND TRIBUTARIES OF THE NEW YORK CITY WATER SUPPLY. Journal of the American Water Resources Association, 2004, 40, 663-676.	1.0	16
80	An Upwelling Event at Onondaga Lake, NY: Characterization, Impact and Recurrence*. Hydrobiologia, 2004, 511, 185-199.	1.0	9
81	Decreases in Pollutant Loading from Residual Soda Ash Production Waste. Water, Air, and Soil Pollution, 2003, 146, 55-73.	1.1	28
82	Application of a Probabilistic Ammonia Model: Identification of Important Model Inputs and Critique of a TMDL Analysis for an Urban Lake. Lake and Reservoir Management, 2003, 19, 187-199.	0.4	10
83	Impacts of a Soda Ash Facility on Onondaga Lake and the Seneca River, NY. Lake and Reservoir Management, 2003, 19, 285-306.	0.4	36
84	Limnological and Loading Information and a Phosphorus Total Maximum Daily Load (TMDL) Analysis for Onondaga Lake. Lake and Reservoir Management, 2002, 18, 87-108.	0.4	50
85	America's Most Polluted Lake: Using Robotic Buoys to Monitor the Rehabilitation of Onondaga Lake. Journal of Urban Technology, 2002, 9, 21-44.	2.5	20
86	Invasion of Onondaga Lake, New York, by the zebra mussel (Dreissena polymorpha) following reductions in N pollution. Journal of the North American Benthological Society, 2002, 21, 634-650.	3.0	15
87	SUSPENSOIDS IN NEW YORK CITY'S DRINKING WATER RESERVOIRS: TURBIDITY APPORTIONMENT1. Journal of the American Water Resources Association, 2002, 38, 1453-1465.	1.0	23
88	Tripton, transparency and light penetration in seven New York reservoirs. Hydrobiologia, 2002, 468, 213-232.	1.0	28
89	Patterns and impacts of inorganic tripton in Cayuga Lake. Hydrobiologia, 2002, 482, 137-150.	1.0	11
90	Estimating oxygen exchange across the air–water interface of a hypereutrophic lake. Hydrobiologia, 2002, 487, 243-254.	1.0	23

#	Article	IF	CITATIONS
91	Changes in Deposition of Phytoplankton Constituents in a Ca2+Polluted Lakeâ€. Environmental Science & Technology, 2001, 35, 3082-3088.	4.6	21
92	Modeling the Effects of Tripton on Water Clarity: Lake Champlain. Journal of Water Resources Planning and Management - ASCE, 2001, 127, 224-234.	1.3	18
93	Probabilistic Model of Ammonia and Toxicity Status for Urban Lake. Journal of Water Resources Planning and Management - ASCE, 2001, 127, 337-347.	1.3	21
94	Patterns of gross deposition in reservoirs enriched in inorganic tripton. Canadian Journal of Fisheries and Aquatic Sciences, 2001, 58, 2177-2188.	0.7	16
95	The Effect of Terrigenous Inputs on Spatial Patterns of Water Quality Indicators in South Lake, Lake Champlain. Journal of Great Lakes Research, 2000, 26, 366-383.	0.8	13
96	Nitrite and the Two Stages of Nitrification in Nitrogen Polluted Onondaga Lake, New York. Journal of Environmental Quality, 1999, 28, 1505-1517.	1.0	19
97	Dry Weight Deposition in Polluted Onondaga Lake, New York, U.S.A Water, Air, and Soil Pollution, 1998, 103, 389-404.	1.1	10
98	Hydrologic Analysis and Model Development for Cannonsville Reservoir. Lake and Reservoir Management, 1998, 14, 140-151.	0.4	27
99	Calibration, Verification, and an Application of a Two-Dimensional Hydrothermal Model [CE-QUAL-W2(t)] for Cannonsville Reservoir. Lake and Reservoir Management, 1998, 14, 186-196.	0.4	37
100	Phosphorus Bioavailability and P-Cycling in Cannonsville Reservoir. Lake and Reservoir Management, 1998, 14, 278-289.	0.4	36
101	Calcium carbonate deposition in Ca2+ polluted Onondaga Lake, New York, U.S.A Water Research, 1996, 30, 2139-2147.	5.3	23
102	Pollutant Sources, Depositional Environment, and the Surficial Sediments of Onondaga Lake, New York. Journal of Environmental Quality, 1996, 25, 46-55.	1.0	38
103	Changes in the Zooplankton of Onondaga Lake: Causes and Implications. Lake and Reservoir Management, 1996, 12, 59-71.	0.4	26
104	Domestic Waste Inputs of Nitrogen and Phosphorus to Onondaga Lake, and Water Quality Implications. Lake and Reservoir Management, 1996, 12, 127-140.	0.4	33
105	Phosphorus Pools, Alkaline Phosphatase Activity, and Phosphorus Limitation in Hypereutrophic Onondaga Lake. Lake and Reservoir Management, 1996, 12, 47-57.	0.4	38
106	Summer Methane Fluxes and Fall Oxygen Resources of Onondaga Lake. Lake and Reservoir Management, 1996, 12, 91-101.	0.4	28
107	Optical Characteristics of Onondaga Lake: 1968–1990. Lake and Reservoir Management, 1996, 12, 103-113.	0.4	26
108	Sediments. Springer Series on Environmental Management, 1996, , 600-666.	0.3	6

7

#	Article	IF	CITATIONS
109	Mechanistic Modeling of Water Quality in Onondaga Lake. Springer Series on Environmental Management, 1996, , 667-788.	0.3	2
110	Changes in Inorganic Carbon Chemistry and Deposition of Onondaga Lake, New York. Environmental Science & Technology, 1994, 28, 1211-1218.	4.6	40
111	Supply of phosphorus to the water column of a productive hardwater lake: controlling mechanisms and management considerations. Hydrobiologia, 1993, 253, 61-72.	1.0	42
112	Individual particle analysis of suspended materials in Onondaga Lake, New York. Environmental Science & Technology, 1991, 25, 736-744.	4.6	58
113	Optics of Little Sodus Bay. Journal of Great Lakes Research, 1991, 17, 109-119.	0.8	18
114	Optical Heterogeneity in Lake Champlain. Journal of Great Lakes Research, 1991, 17, 322-332.	0.8	13
115	Modeling Cl concentration in Cayuga Lake, U.S.A Water, Air, and Soil Pollution, 1989, 44, 347-362.	1.1	19
116	Depletion of epilimnetic oxygen and accumulation of hydrogen sulfide in the hypolimnion of Onondaga Lake, NY, U.S.A Water, Air, and Soil Pollution, 1988, 39, 59-74.	1.1	42
117	Calcium Carbonate Precipitation and Transparency in Lakes: A Case Study. Journal of Environmental Engineering, ASCE, 1987, 113, 124-133.	0.7	12
118	The impact of a chlor-alkali plant on Onondaga Lake and adjoining systems. Water, Air, and Soil Pollution, 1987, 33, 85-115.	1.1	53
119	Failure of spring turnover in Onondaga Lake, NY, U.S.A Water, Air, and Soil Pollution, 1987, 34, 285-291.	1.1	17
120	CALCIUM CARBONATE PRECIPITATION AND TURBIDITY MEASUREMENTS IN OTISCO LAKE, NEW YORK. Journal of the American Water Resources Association, 1987, 23, 73-79.	1.0	36
121	EFFECT OF "WHITING" ON OPTICAL PROPERTIES AND TURBIDITY IN OWASCO LAKE, NEW YORK. Journal of the American Water Resources Association, 1987, 23, 189-196.	1.0	27
122	The oxygen resources of the hypolimnion of ionically enriched onondaga lake, NY, U.S.A Water, Air, and Soil Pollution, 1986, 29, 93-108.	1.1	27
123	Weatherâ€Based Variations in Thermal Stratification. Journal of Hydraulic Engineering, 1986, 112, 159-165.	0.7	23
124	Phosphorus deposition from the epilimnion of Onondaga Lake1. Limnology and Oceanography, 1985, 30, 833-843.	1.6	46
125	Particulate and optical properties during CaCO3 precipitation in Otisco Lake1. Limnology and Oceanography, 1985, 30, 1078-1083.	1.6	71
126	Calcium chemistry and deposition in ionically enriched Onondaga Lake, New York. Environmental Science & Technology, 1985, 19, 716-720.	4.6	42

#	Article	IF	CITATIONS
127	History of Phosphorus Loading to Onondaga Lake. Journal of Environmental Engineering, ASCE, 1984, 110, 93-109.	0.7	39
128	Carbonate Equilibria and the Distribution of Inorganic Carbon in Saginaw Bay. Journal of Great Lakes Research, 1984, 10, 3-14.	0.8	23
129	The seasonal cycle of inorganic carbon species in Cazenovia Lake, New York, 1977 *. Freshwater Biology, 1982, 12, 139-147.	1.2	20
130	Meromixis and Stability at Green Lake, Jamesville, NY, Sept. 1977-Nov. 1978a. Journal of Freshwater Ecology, 1981, 1, 129-139.	0.5	3
131	The Carbonate Chemistry of Green Lake, Jamesville, NYa. Journal of Freshwater Ecology, 1981, 1, 141-153.	0.5	16