Samaneh Shahgaldi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10813540/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of gas diffusion layers for proton exchange membrane fuel cells—With a focus on characteristics, characterization techniques, materials and designs. Progress in Energy and Combustion Science, 2019, 74, 50-102.	31.2	200
2	Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. International Journal of Hydrogen Energy, 2011, 36, 13746-13752.	7.1	171
3	Improved carbon nanostructures as a novel catalyst support in the cathode side of PEMFC: a critical review. Carbon, 2015, 94, 705-728.	10.3	145
4	New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chemical Engineering Journal, 2012, 184, 82-89.	12.7	131
5	Impact of manufacturing processes on proton exchange membrane fuel cell performance. Applied Energy, 2018, 225, 1022-1032.	10.1	82
6	Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Processing Technology, 2014, 124, 290-295.	7.2	79
7	Cathode catalyst layer design with gradients of ionomer distribution for proton exchange membrane fuel cells. Energy Conversion and Management, 2018, 171, 1476-1486.	9.2	66
8	Assessment of graphene as an alternative microporous layer material for proton exchange membrane fuel cells. Fuel, 2018, 215, 726-734.	6.4	64
9	Gas permeability of catalyzed electrodes in polymer electrolyte membrane fuel cells. Applied Energy, 2018, 209, 203-210.	10.1	61
10	Effect of Pt loading and catalyst type on the pore structure of porous electrodes in polymer electrolyte membrane (PEM) fuel cells. Energy, 2018, 150, 69-76.	8.8	55
11	Experimental Observations of Microstructure Changes in the Catalyst Layers of Proton Exchange Membrane Fuel Cells under Wet-Dry Cycles. Journal of the Electrochemical Society, 2018, 165, F3337-F3345.	2.9	52
12	The impact of short side chain ionomer on polymer electrolyte membrane fuel cell performance and durability. Applied Energy, 2018, 217, 295-302.	10.1	51
13	Development of a low temperature decal transfer method for the fabrication of proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 11813-11822.	7.1	44
14	A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison. Renewable Energy, 2018, 126, 485-494.	8.9	44
15	Investigation of catalytic vs reactant transport effect of catalyst layers on proton exchange membrane fuel cell performance. Fuel, 2017, 208, 321-328.	6.4	43
16	Degradations in porous components of a proton exchange membrane fuel cell under freeze-thaw cycles: Morphology and microstructure effects. International Journal of Hydrogen Energy, 2020, 45, 3618-3631.	7.1	40
17	Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3â~î´ perovskite oxide cathode nanofibers. Journal of Alloys and Compounds, 2011, 509, 9005-9009.	5.5	39
18	Pore structure and effective diffusion coefficient of catalyzed electrodes in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy. 2018. 43. 3776-3785.	7.1	37

SAMANEH SHAHGALDI

#	Article	IF	CITATIONS
19	Effect of catalyst deposition on electrode structure, mass transport and performance of polymer electrolyte membrane fuel cells. Applied Energy, 2019, 255, 113802.	10.1	32
20	Impact of ionomer in the catalyst layers on proton exchange membrane fuel cell performance under different reactant flows and pressures. Fuel, 2018, 227, 35-41.	6.4	30
21	Stability study of ultra-low Pt thin film on TiO 2 –C core–shell structure and TiO 2 encapsulated in carbon nanospheres as cathode catalyst in PEMFC. Fuel, 2015, 150, 645-655.	6.4	29
22	The role of Al and Mg in the hydrogen storage of electrospun ZnO nanofibers. International Journal of Hydrogen Energy, 2012, 37, 8388-8394.	7.1	27
23	The effect of low platinum loading on the efficiency of PEMFC's electrocatalysts supported on TiO2–Nb, and SnO2–Nb: An experimental comparison between active and stable conditions. Energy Conversion and Management, 2015, 103, 681-690.	9.2	25
24	The role of flow-field layout on the conditioning of a proton exchange membrane fuel cell. Fuel, 2018, 230, 98-103.	6.4	23
25	A novel membrane electrode assembly design for proton exchange membrane fuel cells: Characterization and performance evaluation. Electrochimica Acta, 2019, 299, 809-819.	5.2	22
26	Modelling of mechanical microstructure changes in the catalyst layer of a polymer electrolyte membrane fuel cell. International Journal of Hydrogen Energy, 2020, 45, 29904-29916.	7.1	22
27	The impact of ionomer type on the morphological and microstructural degradations of proton exchange membrane fuel cell electrodes under freeze-thaw cycles. Applied Energy, 2019, 238, 1048-1059.	10.1	20
28	Characterization and the hydrogen storage capacity of titania-coated electrospun boron nitride nanofibers. International Journal of Hydrogen Energy, 2012, 37, 11237-11243.	7.1	17
29	A scaled-up proton exchange membrane fuel cell with enhanced performance and durability. Applied Energy, 2020, 268, 114956.	10.1	15
30	Synthesis of high-surface-area hexagonal LaNi5 nanofibers via electrospinning. Journal of Alloys and Compounds, 2012, 541, 335-337.	5.5	11
31	Degradations in the surface wettability and gas permeability characteristics of proton exchange membrane fuel cell electrodes under freeze-thaw cycles: Effects of ionomer type. International Journal of Hydrogen Energy, 2020, 45, 29892-29903.	7.1	11
32	The effect of non-spherical platinum nanoparticle sizes on the performance and durability of proton exchange membrane fuel cells. Advances in Applied Energy, 2021, 4, 100071.	13.2	9
33	A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application. Frontiers in Energy, 2017, 11, 245-253.	2.3	8
34	Gas Diffusion Layers forÂPEM Fuel Cells. , 2018, , 695-727.		6
35	Geometric pore surface area and fractal dimension of catalyzed electrodes in polymer electrolyte membrane fuel cells. International Journal of Energy Research, 2019, 43, 3011-3019.	4.5	5
36	Influence of Ionomer Structures and Ratios on Performance and Degradation of PEM Fuel Cells. ECS Transactions, 2018, 83, 71-78.	0.5	4