Yanyu Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10811626/publications.pdf Version: 2024-02-01

YANYU HUANG

#	Article	IF	CITATIONS
1	Tumor Receptor-Mediated In Vivo Modulation of the Morphology, Phototherapeutic Properties, and Pharmacokinetics of Smart Nanomaterials. ACS Nano, 2021, 15, 468-479.	14.6	21
2	Immunosuppressive Roles of Galectin-1 in the Tumor Microenvironment. Biomolecules, 2021, 11, 1398.	4.0	19
3	Ultraeffective Cancer Therapy with an Antimoneneâ€Based Xâ€Ray Radiosensitizer. Advanced Functional Materials, 2020, 30, 1906010.	14.9	57
4	Chiralityâ€Ðriven Transportation and Oxidation Prevention by Chiral Selenium Nanoparticles. Angewandte Chemie, 2020, 132, 4436-4444.	2.0	22
5	Chiralityâ€Driven Transportation and Oxidation Prevention by Chiral Selenium Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 4406-4414.	13.8	77
6	Frontispiz: Chiralityâ€Ðriven Transportation and Oxidation Prevention by Chiral Selenium Nanoparticles. Angewandte Chemie, 2020, 132, .	2.0	0
7	Engineering EHD1-Targeted Natural Borneol Nanoemulsion Potentiates Therapeutic Efficacy of Gefitinib against Nonsmall Lung Cancer. ACS Applied Materials & Interfaces, 2020, 12, 45714-45727.	8.0	14
8	Frontispiece: Chiralityâ€Ðriven Transportation and Oxidation Prevention by Chiral Selenium Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, .	13.8	1
9	Cancer Immunotherapy: Designing Bioinspired 2D MoSe ₂ Nanosheet for Efficient Photothermalâ€Triggered Cancer Immunotherapy with Reprogramming Tumorâ€Associated Macrophages (Adv. Funct. Mater. 30/2019). Advanced Functional Materials, 2019, 29, 1970210.	14.9	6
10	Peptide-based materials for cancer immunotherapy. Theranostics, 2019, 9, 7807-7825.	10.0	77
11	Design and Synthesis of 2â€(5â€Phenylindolâ€3â€yl)benzimidazole Derivatives with Antiproliferative Effects towards Tripleâ€Negative Breast Cancer Cells by Activation of ROSâ€Mediated Mitochondria Dysfunction. Chemistry - an Asian Journal, 2019, 14, 2648-2655.	3.3	5
12	Designing Bioinspired 2D MoSe ₂ Nanosheet for Efficient Photothermalâ€Triggered Cancer Immunotherapy with Reprogramming Tumorâ€Associated Macrophages. Advanced Functional Materials, 2019, 29, 1901240.	14.9	149
13	Precise delivery of a multifunctional nanosystem for MRI-guided cancer therapy and monitoring of tumor response by functional diffusion-weighted MRI. Journal of Materials Chemistry B, 2019, 7, 2926-2937.	5.8	15
14	Structure–Activity Relationship Analysis on Antioxidant and Anticancer Actions of Theaflavins on Human Colon Cancer Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 159-170.	5.2	17
15	Sequentially Triggered Delivery System of Black Phosphorus Quantum Dots with Surface Charge-Switching Ability for Precise Tumor Radiosensitization. ACS Nano, 2018, 12, 12401-12415.	14.6	100
16	Bioinspired tumor-homing nanosystem for precise cancer therapy via reprogramming of tumor-associated macrophages. NPG Asia Materials, 2018, 10, 1002-1015.	7.9	51
17	Nucleus-targeted DNA tetrahedron as a nanocarrier of metal complexes for enhanced glioma therapy. Chemical Communications, 2018, 54, 9394-9397.	4.1	36
18	Efficient Overcoming of Blood–Brain Barrier by Functionalized Selenium Nanoparticles to Treat Glioma. Advanced Therapeutics, 2018, 1, 1800074.	3.2	13

Yanyu Huang

#	Article	IF	CITATIONS
19	High‥ield Synthesis of Multifunctional Tellurium Nanorods to Achieve Simultaneous Chemoâ€Photothermal Combination Cancer Therapy. Advanced Functional Materials, 2017, 27, 1701388.	14.9	81
20	Phycocyanin-based nanocarrier as a new nanoplatform for efficient overcoming of cancer drug resistance. Journal of Materials Chemistry B, 2017, 5, 3300-3314.	5.8	25
21	Size changeable nanosystems for precise drug controlled release and efficient overcoming of cancer multidrug resistance. Journal of Materials Chemistry B, 2017, 5, 944-952.	5.8	14
22	A highly selective dual-therapeutic nanosystem for simultaneous anticancer and antiangiogenesis therapy. Journal of Materials Chemistry B, 2017, 5, 8228-8237.	5.8	12
23	A multi-functional PEGylated gold(<scp>iii</scp>) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chemical Science, 2017, 8, 1942-1953.	7.4	56
24	Cancer Therapy: Highâ€Yield Synthesis of Multifunctional Tellurium Nanorods to Achieve Simultaneous Chemoâ€Photothermal Combination Cancer Therapy (Adv. Funct. Mater. 33/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
25	Dualâ€Functional Nanographene Oxide as Cancerâ€Targeted Drugâ€Delivery System to Selectively Induce Cancerâ€Cell Apoptosis. Chemistry - an Asian Journal, 2016, 11, 1008-1019.	3.3	20
26	Cancer-targeted tri-block copolymer nanoparticles as payloads of metal complexes to achieve enhanced cancer theranosis. Journal of Materials Chemistry B, 2016, 4, 4517-4525.	5.8	22
27	A multifunctional DNA origami as carrier of metal complexes to achieve enhanced tumoral delivery and nullified systemic toxicity. Biomaterials, 2016, 103, 183-196.	11.4	101
28	RGD peptide-conjugated selenium nanoparticles: antiangiogenesis by suppressing VEGF-VEGFR2-ERK/AKT pathway. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1627-1639.	3.3	106
29	Rational Design of Cancer-Targeted Benzoselenadiazole by RGD Peptide Functionalization for Cancer Theranostics. Macromolecular Rapid Communications, 2015, 36, 1559-1565.	3.9	16
30	Cancerâ€Targeted Monodisperse Mesoporous Silica Nanoparticles as Carrier of Ruthenium Polypyridyl Complexes to Enhance Theranostic Effects. Advanced Functional Materials, 2014, 24, 2754-2763.	14.9	165
31	Rational Design of Cancer-Targeted BSA Protein Nanoparticles as Radiosensitizer to Overcome Cancer Radioresistance. ACS Applied Materials & Interfaces, 2014, 6, 19217-19228.	8.0	85
32	Selective cellular uptake and induction of apoptosis of cancer-targeted selenium nanoparticles. Biomaterials, 2013, 34, 7106-7116.	11.4	361