Daniel I Pineda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1081144/publications.pdf

Version: 2024-02-01

623734 677142 34 568 14 22 citations h-index g-index papers 34 34 34 318 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kinetics of methyl methacrylate (MMA) combustion assessed by time-resolved speciation behind shock waves. , 2022, , .		0
2	Hypergolic Continuous Detonation with Space-Storable Propellants and Additively Manufactured Injector Design. Journal of Spacecraft and Rockets, 2022, 59, 1332-1341.	1.9	5
3	Turbulence-induced bias in time-averaged laser absorption tomography of correlated concentration and temperature fields with a first-order correction. Combustion and Flame, 2022, 242, 112210.	5.2	6
4	Volumetric laser absorption imaging of temperature, CO and CO <mml:math altimg="si2.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> in laminar flames using 3D masked Tikhonov regularization. Combustion and Flame, 2021, 224, 239-247.	5.2	25
5	Competitive oxidation of methane and <mml:math altimg="si23.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>C</mml:mtext><mml:mn>2</mml:mn></mml:msub></mml:math> hydrocarbons discerned by isotopic labeling and laser absorption spectroscopy of CO isotopologues in shock-heated mixtures. Combustion and Flame. 2021. 224. 54-65.	5.2	7
6	Methane-oxygen rotating detonation exhaust thermodynamics with variable mixing, equivalence ratio, and mass flux. Aerospace Science and Technology, 2021, 113, 106683.	4.8	22
7	Physics-trained neural network for sparse-view volumetric laser absorption imaging of species and temperature in reacting flows. Optics Express, 2021, 29, 22553.	3.4	13
8	Rotating detonation of hypergolic space-storable rocket propellants with additively-manufactured injector design. , $2021, $, .		3
9	Design and construction of a modular thrust stand for propulsion research and education at UTSA. , $2021,$, .		0
10	Learning network for laser absorption imaging in flames using mid-fidelity simulations. , 2021, , .		0
11	MHz mid-infrared laser absorption sensor for carbon monoxide and temperature behind detonation waves. , 2020, , .		8
12	Carbon oxidation in turbulent premixed jet flames: A comparative experimental and numerical study of ethylene, n-heptane, and toluene. Combustion and Flame, 2020, 221, 371-383.	5.2	14
13	MHz laser absorption spectroscopy via diplexed RF modulation for pressure, temperature, and species in rotating detonation rocket flows. Applied Physics B: Lasers and Optics, 2020, 126, 1.	2.2	59
14	In-situ thermochemical analysis of hybrid rocket fuel oxidation via laser absorption tomography of CO , \$\$ext CO , \$\$, \$\$ext CO , and \$\$ex	2.4	15
15	Progressive project-based learning program for collegiate rocket engineering. , 2020, , .		2
16	Line mixing and broadening of carbon dioxide by argon in the v3 bandhead near 4.2µm at high temperatures and high pressures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 253, 107135.	2.3	22
17	Temperature-dependent line mixing in the R-branch of the v3 band of methane. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 255, 107271.	2.3	11
18	Interband cascade laser absorption of hydrogen chloride for high-temperature thermochemical analysis of fire-resistant polymer reactivity. Applied Optics, 2020, 59, 2141.	1.8	10

#	Article	IF	CITATIONS
19	Deep neural network inversion for 3D laser absorption imaging of methane in reacting flows. Optics Letters, 2020, 45, 2447.	3.3	39
20	3D laser absorption imaging of combustion gases assisted by deep learning. , 2020, , .		0
21	Multi-isotopologue laser absorption spectroscopy of carbon monoxide for high-temperature chemical kinetic studies of fuel mixtures. Combustion and Flame, 2019, 207, 379-390.	5.2	33
22	Line mixing and broadening in the $v(1\hat{a}\dagger'3)$ first overtone bandhead of carbon monoxide at high temperatures and high pressures. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 239, 106636.	2.3	30
23	High-pressure and high-temperature gas cell for absorption spectroscopy studies at wavelengths up to 8µm. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 227, 145-151.	2.3	25
24	Low-cost student-manufacturable liquid oxygen-ethanol sounding rocket. , 2019, , .		2
25	Time-resolved laser absorption imaging of ethane at 2  kHz in unsteady partially premixed flames. Applied Optics, 2019, 58, 5656.	1.8	13
26	Tomographic laser absorption imaging of combustion species and temperature in the mid-wave infrared. Optics Express, 2018, 26, 20944.	3.4	56
27	Mid-infrared laser absorption tomography for quantitative 2D thermochemistry measurements in premixed jet flames. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	51
28	Mid-infrared laser absorption tomography for quantitative temperature, CO, and CO2 in turbulent flames. , 2018, , .		0
29	The Role of Hydrodynamic Enhancement on Ignition of Lean Methane-Air Mixtures by Pulsed Nanosecond Discharges for Automotive Engine Applications. Combustion Science and Technology, 2017, 189, 2023-2037.	2.3	4
30	Modeling hydrogen inhibition in gasification surface reactions. International Journal of Hydrogen Energy, 2015, 40, 6059-6071.	7.1	6
31	Nanosecond Pulsed Discharge Ignition in a Lean Methane-Air Mixture., 2015,,.		6
32	Conversion of jet fuel and butanol to syngas by filtration combustion. International Journal of Hydrogen Energy, 2013, 38, 879-889.	7.1	30
33	Syngas production from burner-stabilized methane/air flames: The effect of preheated reactants. Combustion and Flame, 2013, 160, 557-564.	5.2	16
34	Application of Corona Discharge Ignition in a Boosted Direct-Injection Single Cylinder Gasoline Engine: Effects on Combustion Phasing, Fuel Consumption, and Emissions. SAE International Journal of Engines, 0, 9, 1970-1988.	0.4	35