Yu Yang

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/10811074/yu-yang-publications-by-year.pdf

Version: 2024-04-05

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52
papers1,946
citations26
h-index44
g-index52
ext. papers2,665
ext. citations10.3
avg, IF4.86
L-index

#	Paper	IF	Citations
52	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. <i>Cell</i> , 2021 , 184, 18	9 <i>56</i> 1 <i>2</i> 1	131 g 19
51	Effect of the structure and micropore of activated and oxidized black carbon on the sorption and desorption of nonylphenol. <i>Science of the Total Environment</i> , 2021 , 761, 144191	10.2	4
50	A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. <i>Cell</i> , 2021 , 184, 792-809	. € 83≥	100
49	Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. <i>AMB Express</i> , 2021 , 11, 129	4.1	0
48	Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic transition. <i>Geoderma</i> , 2020 , 376, 114535	6.7	3
47	Relationship between historical changes of PBDEs, PAHs, and algal organic matter in sediments of Poyang Lake under climate warming. <i>Human and Ecological Risk Assessment (HERA)</i> , 2020 , 26, 2390-240	6 ^{4.9}	4
46	Effects of the structures and micropores of sedimentary organic matter on the oxidative degradation of benzo(a)pyrene by NaSO. <i>Water Research</i> , 2020 , 174, 115635	12.5	4
45	Importance of the structure and micropores of sedimentary organic matter in the sorption of phenanthrene and nonylphenol. <i>Environmental Pollution</i> , 2020 , 260, 114034	9.3	7
44	Impact of trophic levels on partitioning and bioaccumulation of polycyclic aromatic hydrocarbons in particulate organic matter and plankton. <i>Marine Pollution Bulletin</i> , 2020 , 160, 111527	6.7	1
43	Anaerobic Dehalogenation by Reduced Aqueous Biochars. <i>Environmental Science & Environmental Science &</i>	10.3	5
42	Oxidation of soil organic carbon during an anoxic-oxic transition. <i>Geoderma</i> , 2020 , 377, 114584	6.7	8
41	Importance of Sporopollenin Structure and Accessibility in the Sorption of Phenanthrene by Biota Spores and Pollens. <i>Environmental Science & Environmental Science & Environm</i>	10.3	5
40	Effects of the Chemical Structure, Surface, and Micropore Properties of Activated and Oxidized Black Carbon on the Sorption and Desorption of Phenanthrene. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 7683-7693	10.3	20
39	Effects of compositions, chemical structures, and microporosity of sedimentary organic matter on degradation of benzo(a)pyrene by hydrogen peroxide. <i>Water Research</i> , 2019 , 159, 414-422	12.5	5
38	Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. <i>Science of the Total Environment</i> , 2019 , 668, 216-223	10.2	4
37	Mobilization of ferrihydrite-associated organic carbon during Fe reduction: Adsorption versus coprecipitation. <i>Chemical Geology</i> , 2019 , 503, 61-68	4.2	32
36	Aerobic respiration of mineral-bound organic carbon in a soil. <i>Science of the Total Environment</i> , 2019 , 651, 1253-1260	10.2	13

(2015-2019)

35	Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 244, 86-98	5.5	21
34	Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. <i>Environmental Science & Environmental Science & Environ</i>	10.3	63
33	Distribution and partitioning of polybrominated diphenyl ethers in sediments from the Pearl River Delta and Guiyu, South China. <i>Environmental Pollution</i> , 2018 , 235, 104-112	9.3	37
32	Nanopore-filling effect of phenanthrene sorption on modified black carbon. <i>Science of the Total Environment</i> , 2018 , 642, 1050-1059	10.2	10
31	Stability of Ferrihydrite-Humic Acid Coprecipitates under Iron-Reducing Conditions. <i>Environmental Science & Environmental Sci</i>	10.3	18
30	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. <i>Chemical Geology</i> , 2017 , 464, 118-126	4.2	43
29	Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 499-506	4.3	4
28	Importance of the structure and nanoporosity of organic matter on the desorption kinetics of benzo[a]pyrene in sediments. <i>Environmental Pollution</i> , 2017 , 225, 628-636	9.3	8
27	Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention. <i>Environmental Pollution</i> , 2017 , 230, 882-890	9.3	33
26	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 212, 221-233	5.5	63
25	Role of structure, accessibility and microporosity on sorption of phenanthrene and nonylphenol by sediments and their fractions. <i>Environmental Pollution</i> , 2016 , 219, 456-465	9.3	16
24	Novel Phenanthrene Sorption Mechanism by Two Pollens and Their Fractions. <i>Environmental Science & Environmental Science & Env</i>	10.3	9
23	Asynchronous reductive release of iron and organic carbon from hematiteBumic acid complexes. <i>Chemical Geology</i> , 2016 , 430, 13-20	4.2	28
22	Biochar-Facilitated Microbial Reduction of Hematite. <i>Environmental Science & Emp; Technology</i> , 2016 , 50, 2389-95	10.3	110
21	Iron-bound organic carbon in forest soils: quantification and characterization. <i>Biogeosciences</i> , 2016 , 13, 4777-4788	4.6	79
20	Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. <i>Environmental Pollution</i> , 2016 , 219, 735-741	9.3	33
19	Impact of humic acid coating on sorption of naphthalene by biochars. <i>Carbon</i> , 2015 , 94, 946-954	10.4	27
18	Selective stabilization of aliphatic organic carbon by iron oxide. <i>Scientific Reports</i> , 2015 , 5, 11214	4.9	63

17	Dissolution of uranyl and plutonyl borates: Influences of crystalline structures and aqueous ligands. <i>Chemical Geology</i> , 2013 , 357, 67-74	4.2	3
16	Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. <i>Environmental Science & amp; Technology</i> , 2013 , 47, 2661-9	10.3	36
15	Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. <i>Environmental Science & Environmental & Environme</i>	10.3	47
14	Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1431-7	3.8	15
13	Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. <i>Environmental Science & Environmental Envir</i>	10.3	105
12	Sequestration of organochlorine pesticides in soils of distinct organic carbon content. <i>Environmental Pollution</i> , 2011 , 159, 700-5	9.3	31
11	Cell absorption induced desorption of hydrophobic organic contaminants from digested soil residue. <i>Chemosphere</i> , 2011 , 83, 1461-6	8.4	13
10	Impact of de-ashing humic Acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene. <i>Environmental Science & Environmental & Env</i>	10.3	73
9	Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene. <i>Environmental Science & Environmental S</i>	10.3	25
8	Mobility of polycyclic aromatic hydrocarbons in the gastrointestinal tract assessed using an in vitro digestion model with sorption rectification. <i>Environmental Science & Environmental & En</i>	10.3	23
7	Assessment of oral bioaccessibility of organochlorine pesticides in soil using an in vitro gastrointestinal model. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	54
6	Bioaccessibility of polychlorinated biphenyls in different foods using an in vitro digestion method. <i>Environmental Pollution</i> , 2008 , 156, 1218-26	9.3	52
5	Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. <i>Environmental Science & Environmental Science & E</i>	10.3	139
4	Sorption of phenanthrene by nonhydrolyzable organic matter from different size sediments. <i>Environmental Science & Environmental Science & Environment</i>	10.3	46
3	Strong sorption of phenanthrene by condensed organic matter in soils and sediments. <i>Environmental Science & Environmental Sci</i>	10.3	136
2	Inhalation exposure of traffic police officers to polycyclic aromatic hydrocarbons (PAHs) during the winter in Beijing, China. <i>Science of the Total Environment</i> , 2007 , 383, 98-105	10.2	65
1	Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China. <i>Environmental Science & Environmental Science & Environ</i>	9 ^{10.3}	53