Yu Yang

List of Publications by Citations

Source: https://exaly.com/author-pdf/10811074/yu-yang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

52 1,946 26 44 g-index

52 2,665 10.3 4.86 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
52	COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. <i>Cell</i> , 2021 , 184, 189	95 <i>6</i> 121	31 g 19
51	Organochlorine pesticides contaminated surface soil as reemission source in the Haihe Plain, China. <i>Environmental Science & Environmental Science & E</i>	10.3	139
50	Strong sorption of phenanthrene by condensed organic matter in soils and sediments. <i>Environmental Science & Environmental Sci</i>	10.3	136
49	Biochar-Facilitated Microbial Reduction of Hematite. <i>Environmental Science & Environmental Science & </i>	10.3	110
48	Sorption mechanisms of phenanthrene, lindane, and atrazine with various humic acid fractions from a single soil sample. <i>Environmental Science & Environmental Science & Envir</i>	10.3	105
47	A pan-cancer single-cell transcriptional atlas of tumor infiltrating myeloid cells. <i>Cell</i> , 2021 , 184, 792-809	. § 83	100
46	Iron-bound organic carbon in forest soils: quantification and characterization. <i>Biogeosciences</i> , 2016 , 13, 4777-4788	4.6	79
45	Impact of de-ashing humic Acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene. <i>Environmental Science & Environmental Science & Env</i>	10.3	73
44	Inhalation exposure of traffic police officers to polycyclic aromatic hydrocarbons (PAHs) during the winter in Beijing, China. <i>Science of the Total Environment</i> , 2007 , 383, 98-105	10.2	65
43	Selective stabilization of aliphatic organic carbon by iron oxide. Scientific Reports, 2015, 5, 11214	4.9	63
42	Dual Role of Humic Substances As Electron Donor and Shuttle for Dissimilatory Iron Reduction. <i>Environmental Science & Environmental Science & Environ</i>	10.3	63
41	Dynamics of ferrihydrite-bound organic carbon during microbial Fe reduction. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 212, 221-233	5.5	63
40	Assessment of oral bioaccessibility of organochlorine pesticides in soil using an in vitro gastrointestinal model. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	54
39	Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China. <i>Environmental Science & Environmental Science & Environ</i>	9 ^{10.3}	53
38	Bioaccessibility of polychlorinated biphenyls in different foods using an in vitro digestion method. <i>Environmental Pollution</i> , 2008 , 156, 1218-26	9.3	52
37	Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale. <i>Environmental Science & Environmental Science & E</i>	10.3	47
36	Sorption of phenanthrene by nonhydrolyzable organic matter from different size sediments. <i>Environmental Science & Environmental Science & Environment</i>	10.3	46

35	Coupled dynamics of iron and iron-bound organic carbon in forest soils during anaerobic reduction. <i>Chemical Geology</i> , 2017 , 464, 118-126	4.2	43
34	Distribution and partitioning of polybrominated diphenyl ethers in sediments from the Pearl River Delta and Guiyu, South China. <i>Environmental Pollution</i> , 2018 , 235, 104-112	9.3	37
33	Impact of interactions between natural organic matter and metal oxides on the desorption kinetics of uranium from heterogeneous colloidal suspensions. <i>Environmental Science & Environmental Science </i>	10.3	36
32	Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention. <i>Environmental Pollution</i> , 2017 , 230, 882-890	9.3	33
31	Seasonal variation and partitioning of endocrine disrupting chemicals in waters and sediments of the Pearl River system, South China. <i>Environmental Pollution</i> , 2016 , 219, 735-741	9.3	33
30	Mobilization of ferrihydrite-associated organic carbon during Fe reduction: Adsorption versus coprecipitation. <i>Chemical Geology</i> , 2019 , 503, 61-68	4.2	32
29	Sequestration of organochlorine pesticides in soils of distinct organic carbon content. <i>Environmental Pollution</i> , 2011 , 159, 700-5	9.3	31
28	Asynchronous reductive release of iron and organic carbon from hematiteflumic acid complexes. <i>Chemical Geology</i> , 2016 , 430, 13-20	4.2	28
27	Impact of humic acid coating on sorption of naphthalene by biochars. <i>Carbon</i> , 2015 , 94, 946-954	10.4	27
26	Effects of composition and domain arrangement of biopolymer components of soil organic matter on the bioavailability of phenanthrene. <i>Environmental Science & Environmental S</i>	10.3	25
25	Mobility of polycyclic aromatic hydrocarbons in the gastrointestinal tract assessed using an in vitro digestion model with sorption rectification. <i>Environmental Science & Environmental Science & En</i>	10.3	23
24	Formation and redox reactivity of ferrihydrite-organic carbon-calcium co-precipitates. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 244, 86-98	5.5	21
23	Effects of the Chemical Structure, Surface, and Micropore Properties of Activated and Oxidized Black Carbon on the Sorption and Desorption of Phenanthrene. <i>Environmental Science & Environmental Science & Technology</i> , 2019 , 53, 7683-7693	10.3	20
22	Stability of Ferrihydrite-Humic Acid Coprecipitates under Iron-Reducing Conditions. <i>Environmental Science & Environmental Sci</i>	10.3	18
21	Role of structure, accessibility and microporosity on sorption of phenanthrene and nonylphenol by sediments and their fractions. <i>Environmental Pollution</i> , 2016 , 219, 456-465	9.3	16
20	Mechanisms regulating bioavailability of phenanthrene sorbed on a peat soil-origin humic substance. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1431-7	3.8	15
19	Cell absorption induced desorption of hydrophobic organic contaminants from digested soil residue. <i>Chemosphere</i> , 2011 , 83, 1461-6	8.4	13
18	Aerobic respiration of mineral-bound organic carbon in a soil. <i>Science of the Total Environment</i> , 2019 , 651, 1253-1260	10.2	13

17	Nanopore-filling effect of phenanthrene sorption on modified black carbon. <i>Science of the Total Environment</i> , 2018 , 642, 1050-1059	10.2	10
16	Novel Phenanthrene Sorption Mechanism by Two Pollens and Their Fractions. <i>Environmental Science & Environmental Science & Env</i>	10.3	9
15	Importance of the structure and nanoporosity of organic matter on the desorption kinetics of benzo[a]pyrene in sediments. <i>Environmental Pollution</i> , 2017 , 225, 628-636	9.3	8
14	Oxidation of soil organic carbon during an anoxic-oxic transition. <i>Geoderma</i> , 2020 , 377, 114584	6.7	8
13	Importance of the structure and micropores of sedimentary organic matter in the sorption of phenanthrene and nonylphenol. <i>Environmental Pollution</i> , 2020 , 260, 114034	9.3	7
12	Importance of Sporopollenin Structure and Accessibility in the Sorption of Phenanthrene by Biota Spores and Pollens. <i>Environmental Science & Environmental Science & Environm</i>	10.3	5
11	Effects of compositions, chemical structures, and microporosity of sedimentary organic matter on degradation of benzo(a)pyrene by hydrogen peroxide. <i>Water Research</i> , 2019 , 159, 414-422	12.5	5
10	Anaerobic Dehalogenation by Reduced Aqueous Biochars. <i>Environmental Science & Environmental &</i>	10.3	5
9	Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan. <i>Environmental Sciences: Processes and Impacts</i> , 2017 , 19, 499-506	4.3	4
8	Biogeochemical fate of ferrihydrite-model organic compound complexes during anaerobic microbial reduction. <i>Science of the Total Environment</i> , 2019 , 668, 216-223	10.2	4
7	Relationship between historical changes of PBDEs, PAHs, and algal organic matter in sediments of Poyang Lake under climate warming. <i>Human and Ecological Risk Assessment (HERA)</i> , 2020 , 26, 2390-2400	6 ^{4.9}	4
6	Effects of the structures and micropores of sedimentary organic matter on the oxidative degradation of benzo(a)pyrene by NaSO. <i>Water Research</i> , 2020 , 174, 115635	12.5	4
5	Effect of the structure and micropore of activated and oxidized black carbon on the sorption and desorption of nonylphenol. <i>Science of the Total Environment</i> , 2021 , 761, 144191	10.2	4
4	Unexpected mechanism for glucose-primed soil organic carbon mineralization under an anaerobic transition. <i>Geoderma</i> , 2020 , 376, 114535	6.7	3
3	Dissolution of uranyl and plutonyl borates: Influences of crystalline structures and aqueous ligands. <i>Chemical Geology</i> , 2013 , 357, 67-74	4.2	3
2	Impact of trophic levels on partitioning and bioaccumulation of polycyclic aromatic hydrocarbons in particulate organic matter and plankton. <i>Marine Pollution Bulletin</i> , 2020 , 160, 111527	6.7	1
1	Whole genome sequencing of Enterobacter mori, an emerging pathogen of kiwifruit and the potential genetic adaptation to pathogenic lifestyle. <i>AMB Express</i> , 2021 , 11, 129	4.1	O