Blake A Simmons

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10809758/publications.pdf

Version: 2024-02-01

293 papers 21,727 citations

76 h-index 132 g-index

300 all docs

300 does citations

300 times ranked

19745 citing authors

#	Article	IF	CITATIONS
1	Review of advances in the development of laccases for the valorization of lignin to enable the production of lignocellulosic biofuels and bioproducts. Biotechnology Advances, 2022, 54, 107809.	6.0	50
2	Cooperative Brønsted-Lewis acid sites created by phosphotungstic acid encapsulated metal–organic frameworks for selective glucose conversion to 5-hydroxymethylfurfural. Fuel, 2022, 310, 122459.	3.4	28
3	Depolymerization of lignin for biological conversion through sulfonation and a chelator-mediated Fenton reaction. Green Chemistry, 2022, 24, 1627-1643.	4.6	6
4	One-pot ethanol production under optimized pretreatment conditions using agave bagasse at high solids loading with low-cost biocompatible protic ionic liquid. Green Chemistry, 2022, 24, 207-217.	4.6	13
5	Scale-Up of the Ionic Liquid-Based Biomass Conversion Processes. , 2022, , 1-8.		0
6	Comparative Study on the Pretreatment of Aspen and Maple With 1-Ethyl-3-methylimidazolium Acetate and Cholinium Lysinate. Frontiers in Energy Research, 2022, 10, .	1.2	3
7	Complete Genome Sequences of Five Isolated Pseudomonas Strains that Catabolize Pentose Sugars and Aromatic Compounds Obtained from Lignocellulosic Biomass. Microbiology Resource Announcements, 2022, 11, e0098721.	0.3	4
8	<i>In silico</i> COSMO-RS predictive screening of ionic liquids for the dissolution of plastic. Green Chemistry, 2022, 24, 4140-4152.	4.6	33
9	Machine learning for metabolic engineering: A review. Metabolic Engineering, 2021, 63, 34-60.	3.6	135
10	Towards understanding of delignification of grassy and woody biomass in cholinium-based ionic liquids. Green Chemistry, 2021, 23, 6020-6035.	4.6	22
11	Integration of acetic acid catalysis with one-pot protic ionic liquid configuration to achieve high-efficient biorefinery of poplar biomass. Green Chemistry, 2021, 23, 6036-6049.	4.6	29
12	Liquid nanostructure of choline lysinate with water and a model lignin residue. Green Chemistry, 2021, 23, 856-866.	4.6	13
13	A predictive toolset for the identification of effective lignocellulosic pretreatment solvents: a case study of solvents tailored for lignin extraction. Green Chemistry, 2021, 23, 7269-7289.	4.6	22
14	Liquid Nanostructure of Cholinium Argininate Biomass Solvents. ACS Sustainable Chemistry and Engineering, 2021, 9, 2880-2890.	3.2	11
15	Seawater-based one-pot ionic liquid pretreatment of sorghum for jet fuel production. Bioresource Technology Reports, 2021, 13, 100622.	1.5	6
16	Can Multiple Ions in an Ionic Liquid Improve the Biomass Pretreatment Efficacy?. ACS Sustainable Chemistry and Engineering, 2021, 9, 4371-4376.	3.2	15
17	Deconstruction of Woody Biomass via Protic and Aprotic Ionic Liquid Pretreatment for Ethanol Production. ACS Sustainable Chemistry and Engineering, 2021, 9, 4422-4432.	3.2	34
18	High-Efficiency Conversion of Ionic Liquid-Pretreated Woody Biomass to Ethanol at the Pilot Scale. ACS Sustainable Chemistry and Engineering, 2021, 9, 4042-4053.	3.2	40

#	Article	IF	CITATIONS
19	Engineering Saccharomyces cerevisiae for isoprenol production. Metabolic Engineering, 2021, 64, 154-166.	3.6	34
20	Pests, diseases, and aridity have shaped the genome of Corymbia citriodora. Communications Biology, 2021, 4, 537.	2.0	21
21	A multiplexed nanostructure-initiator mass spectrometry (NIMS) assay for simultaneously detecting glycosyl hydrolase and lignin modifying enzyme activities. Scientific Reports, 2021, 11, 11803.	1.6	7
22	Generation of <i>Pseudomonas putida</i> KT2440 Strains with Efficient Utilization of Xylose and Galactose via Adaptive Laboratory Evolution. ACS Sustainable Chemistry and Engineering, 2021, 9, 11512-11523.	3.2	32
23	Production Cost and Carbon Footprint of Biomass-Derived Dimethylcyclooctane as a High-Performance Jet Fuel Blendstock. ACS Sustainable Chemistry and Engineering, 2021, 9, 11872-11882.	3.2	21
24	Evaluation of bacterial hosts for conversion of lignin-derived p-coumaric acid to 4-vinylphenol. Microbial Cell Factories, 2021, 20, 181.	1.9	9
25	Bacterial diversity dynamics in microbial consortia selected for lignin utilization. PLoS ONE, 2021, 16, e0255083.	1.1	11
26	lonic liquid-water mixtures enhance pretreatment and anaerobic digestion of agave bagasse. Industrial Crops and Products, 2021, 171, 113924.	2.5	8
27	Use of ensiled biomass sorghum increases ionic liquid pretreatment efficiency and reduces biofuel production cost and carbon footprint. Green Chemistry, 2021, 23, 3127-3140.	4.6	37
28	Alkanolamines as Dual Functional Solvents for Biomass Deconstruction and Bioenergy Production. Green Chemistry, 2021, 23, 8611-8631.	4.6	8
29	Overexpression of the rice BAHD acyltransferase AT10 increases xylan-bound p-coumarate and reduces lignin in Sorghum bicolor. Biotechnology for Biofuels, 2021, 14, 217.	6.2	16
30	Effect of ionic liquid on sugar-aromatic separation selectivity by metal-organic framework NU-1000 in aqueous solution. Fuel Processing Technology, 2020, 197, 106189.	3.7	4
31	Enhanced Softwood Cellulose Accessibility by H3PO4 Pretreatment: High Sugar Yield without Compromising Lignin Integrity. Industrial & Engineering Chemistry Research, 2020, 59, 1010-1024.	1.8	9
32	Evaluating Protic Ionic Liquid for Woody Biomass One-Pot Pretreatment + Saccharification, Followed by <i>Rhodosporidium toruloides</i> Cultivation. ACS Sustainable Chemistry and Engineering, 2020, 8, 782-791.	3.2	18
33	Adaptive laboratory evolution of Pseudomonas putida KT2440 improves p-coumaric and ferulic acid catabolism and tolerance. Metabolic Engineering Communications, 2020, 11, e00143.	1.9	73
34	Conversion of poplar biomass into high-energy density tricyclic sesquiterpene jet fuel blendstocks. Microbial Cell Factories, 2020, 19, 208.	1.9	18
35	Generation of ionic liquid tolerant <i>Pseudomonas putida</i> KT2440 strains <i>via</i> adaptive laboratory evolution. Green Chemistry, 2020, 22, 5677-5690.	4.6	29
36	Whole-Genome Sequence of Brevibacillus borstelensis SDM, Isolated from a Sorghum-Adapted Microbial Community. Microbiology Resource Announcements, 2020, 9, .	0.3	10

#	Article	IF	CITATIONS
37	Structural changes in bacterial and fungal soil microbiome components during biosolarization as related to volatile fatty acid accumulation. Applied Soil Ecology, 2020, 153, 103602.	2.1	10
38	Response of <i>Pseudomonas putida</i> to Complex, Aromaticâ€Rich Fractions from Biomass. ChemSusChem, 2020, 13, 4455-4467.	3.6	23
39	A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 2020, 11, 1106.	5.8	125
40	Theoretical study on the microscopic mechanism of lignin solubilization in Keggin-type polyoxometalate ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 2878-2886.	1.3	20
41	Succession of physiological stages hallmarks the transcriptomic response of theÂfungus Aspergillus niger to lignocellulose. Biotechnology for Biofuels, 2020, 13, 69.	6.2	4
42	Accumulation of high-value bioproducts <i>in planta</i> can improve the economics of advanced biofuels. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8639-8648.	3.3	57
43	The effect of continuous tubular reactor technologies on the pretreatment of lignocellulosic biomass at pilot-scale for bioethanol production. RSC Advances, 2020, 10, 18147-18159.	1.7	17
44	Scale-up of biomass conversion using 1-ethyl-3-methylimidazolium acetateÂas the solvent. Green Energy and Environment, 2019, 4, 432-438.	4.7	36
45	Greenhouse Gas Footprint, Water-Intensity, and Production Cost of Bio-Based Isopentenol as a Renewable Transportation Fuel. ACS Sustainable Chemistry and Engineering, 2019, 7, 15434-15444.	3.2	16
46	Methyl Ketones from Municipal Solid Waste Blends by Oneâ€Pot Ionicâ€Liquid Pretreatment, Saccharification, and Fermentation. ChemSusChem, 2019, 12, 4313-4322.	3.6	14
47	Ethanol production in switchgrass hydrolysate by ionic liquid-tolerant yeasts. Bioresource Technology Reports, 2019, 7, 100275.	1.5	9
48	A toolset of constitutive promoters for metabolic engineering of Rhodosporidium toruloides. Microbial Cell Factories, 2019, 18, 117.	1.9	50
49	Performance of three delignifying pretreatments on hardwoods: hydrolysis yields, comprehensive mass balances, and lignin properties. Biotechnology for Biofuels, 2019, 12, 213.	6.2	27
50	One-pot bio-derived ionic liquid conversion followed by hydrogenolysis reaction for biomass valorization: A promising approach affecting the morphology and quality of lignin of switchgrass and poplar. Bioresource Technology, 2019, 294, 122214.	4.8	34
51	NaCl enhances Escherichia coli growth and isoprenol production in the presence of imidazolium-based ionic liquids. Bioresource Technology Reports, 2019, 6, 1-5.	1.5	8
52	Techno-economic analysis and life-cycle greenhouse gas mitigation cost of five routes to bio-jet fuel blendstocks. Energy and Environmental Science, 2019, 12, 807-824.	15.6	109
53	Guanidine Riboswitch-Regulated Efflux Transporters Protect Bacteria against Ionic Liquid Toxicity. Journal of Bacteriology, 2019, 201, .	1.0	17
54	Sustainable bioproduction of the blue pigment indigoidine: Expanding the range of heterologous products in <i>R. toruloides </i> to include non-ribosomal peptides. Green Chemistry, 2019, 21, 3394-3406.	4.6	57

#	Article	IF	CITATIONS
55	Pilot-scale hydrothermal pretreatment and optimized saccharification enables bisabolene production from multiple feedstocks. Green Chemistry, 2019, 21, 3152-3164.	4.6	24
56	Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresource Technology, 2019, 286, 121365.	4.8	23
57	Methyl ketone production by <i>Pseudomonas putida</i> is enhanced by plantâ€derived amino acids. Biotechnology and Bioengineering, 2019, 116, 1909-1922.	1.7	29
58	Engineering Corynebacterium glutamicum to produce the biogasoline isopentenol from plant biomass hydrolysates. Biotechnology for Biofuels, 2019, 12, 41.	6.2	51
59	Technoâ€economic and greenhouse gas analyses of lignin valorization to eugenol and phenolic products in integrated ethanol biorefineries. Biofuels, Bioproducts and Biorefining, 2019, 13, 978-993.	1.9	40
60	Assessment of biogas production and microbial ecology in a high solid anaerobic digestion of major California food processing residues. Bioresource Technology Reports, 2019, 5, 1-11.	1.5	24
61	A new approach to Cas9-based genome editing in Aspergillus niger that is precise, efficient and selectable. PLoS ONE, 2019, 14, e0210243.	1.1	40
62	Tolerance Characterization and Isoprenol Production of Adapted <i>Escherichia coli</i> in the Presence of Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2019, 7, 1457-1463.	3.2	10
63	Structural Design of Ionic Liquids for Optimizing Aromatic Dissolution. ChemSusChem, 2019, 12, 270-274.	3 . 6	15
64	Dimethyl Sulfoxide Assisted Ionic Liquid Pretreatment of Switchgrass for Isoprenol Production. ACS Sustainable Chemistry and Engineering, 2018, 6, 4354-4361.	3.2	32
65	Characterization of Lignin Streams during Bionic Liquid-Based Pretreatment from Grass, Hardwood, and Softwood. ACS Sustainable Chemistry and Engineering, 2018, 6, 3079-3090.	3.2	70
66	Forward genetics screen coupled with whole-genome resequencing identifies novel gene targets for improving heterologous enzyme production in Aspergillus niger. Applied Microbiology and Biotechnology, 2018, 102, 1797-1807.	1.7	15
67	Linking secondary metabolites to gene clusters through genome sequencing of six diverse <i>Aspergillus</i> species. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E753-E761.	3.3	126
68	Annotation of the Corymbia terpene synthase gene family shows broad conservation but dynamic evolution of physical clusters relative to Eucalyptus. Heredity, 2018, 121, 87-104.	1.2	17
69	Cascade Production of Lactic Acid from Universal Types of Sugars Catalyzed by Lanthanum Triflate. ChemSusChem, 2018, 11, 598-604.	3.6	18
70	Solubilization and Upgrading of High Polyethylene Terephthalate Loadings in a Low osting Bifunctional Ionic Liquid. ChemSusChem, 2018, 11, 781-792.	3.6	62
71	A bacterial pioneer produces cellulase complexes that persist through community succession. Nature Microbiology, 2018, 3, 99-107.	5.9	38
72	Rapid characterization of the activities of lignin-modifying enzymes based on nanostructure-initiator mass spectrometry (NIMS). Biotechnology for Biofuels, 2018, 11, 266.	6.2	14

#	Article	IF	Citations
73	Engineering glycoside hydrolase stability by the introduction of zinc binding. Acta Crystallographica Section D: Structural Biology, 2018, 74, 702-710.	1.1	1
74	Short-chain ketone production by engineered polyketide synthases in Streptomyces albus. Nature Communications, 2018, 9, 4569.	5.8	52
75	Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics, 2018, 50, 1688-1695.	9.4	160
76	Efficient conversion of lignin into a water-soluble polymer by a chelator-mediated Fenton reaction: optimization of H ₂ O ₂ use and performance as a dispersant. Green Chemistry, 2018, 20, 3024-3037.	4.6	36
77	Cloning and Expression of Heterologous Cellulases and Enzymes in Aspergillus niger. Methods in Molecular Biology, 2018, 1796, 123-133.	0.4	О
78	Functional genomics of lipid metabolism in the oleaginous yeast Rhodosporidium toruloides. ELife, $2018, 7, .$	2.8	98
79	Natural Variation in the Multidrug Efflux Pump <i>SGE1</i> Underlies Ionic Liquid Tolerance in Yeast. Genetics, 2018, 210, 219-234.	1.2	30
80	Microbial Community Structure and Functional Potential Along a Hypersaline Gradient. Frontiers in Microbiology, 2018, 9, 1492.	1.5	41
81	Biocompatible Choline-Based Deep Eutectic Solvents Enable One-Pot Production of Cellulosic Ethanol. ACS Sustainable Chemistry and Engineering, 2018, 6, 8914-8919.	3.2	63
82	Development of an integrated approach for \hat{l}_{\pm} -pinene recovery and sugar production from loblolly pine using ionic liquids. Green Chemistry, 2017, 19, 1117-1127.	4.6	10
83	Structure and activity of thermophilic methanogenic microbial communities exposed to quaternary ammonium sanitizer. Journal of Environmental Sciences, 2017, 56, 164-168.	3.2	6
84	Nitrogen amendment of green waste impacts microbial community, enzyme secretion and potential for lignocellulose decomposition. Process Biochemistry, 2017, 52, 214-222.	1.8	20
85	Scale-up and process integration of sugar production by acidolysis of municipal solid waste/corn stover blends in ionic liquids. Biotechnology for Biofuels, 2017, 10, 13.	6.2	24
86	Understanding factors controlling depolymerization and polymerization in catalytic degradation of \hat{l}^2 -ether linked model lignin compounds by versatile peroxidase. Green Chemistry, 2017, 19, 2145-2154.	4.6	29
87	Treatment of lignite and thermal coal with low cost amino acid based ionic liquid-water mixtures. Fuel, 2017, 202, 296-306.	3.4	62
88	One-pot integrated biofuel production using low-cost biocompatible protic ionic liquids. Green Chemistry, 2017, 19, 3152-3163.	4.6	115
89	Parametric study for the optimization of ionic liquid pretreatment of corn stover. Bioresource Technology, 2017, 241, 627-637.	4.8	35
90	From lignin subunits to aggregates: insights into lignin solubilization. Green Chemistry, 2017, 19, 3272-3281.	4.6	149

#	Article	IF	CITATIONS
91	Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metabolic Engineering, 2017, 42, 115-125.	3.6	97
92	Structure of aryl O-demethylase offers molecular insight into a catalytic tyrosine-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3205-E3214.	3.3	24
93	Ternary ionic liquid–water pretreatment systems of an agave bagasse and municipal solid waste blend. Biotechnology for Biofuels, 2017, 10, 72.	6.2	22
94	Biomass Pretreatment Using Dilute Aqueous Ionic Liquid (IL) Solutions with Dynamically Varying IL Concentration and Its Impact on IL Recycling. ACS Sustainable Chemistry and Engineering, 2017, 5, 4408-4413.	3.2	25
95	Rhorix: An interface between quantum chemical topology and the 3D graphics program blender. Journal of Computational Chemistry, 2017, 38, 2538-2552.	1.5	8
96	Life-Cycle Greenhouse Gas and Water Intensity of Cellulosic Biofuel Production Using Cholinium Lysinate Ionic Liquid Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 10176-10185.	3.2	49
97	Survey of Lignin-Structure Changes and Depolymerization during Ionic Liquid Pretreatment. ACS Sustainable Chemistry and Engineering, 2017, 5, 10116-10127.	3.2	77
98	Effect of Ionic Liquid Pretreatment on the Porosity of Pine: Insights from Small-Angle Neutron Scattering, Nitrogen Adsorption Analysis, and X-ray Diffraction. Energy & Energy & 2017, 31, 10874-10879.	2.5	6
99	Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochemistry, 2017, 63, 193-203.	1.8	29
100	Base-Catalyzed Depolymerization of Solid Lignin-Rich Streams Enables Microbial Conversion. ACS Sustainable Chemistry and Engineering, 2017, 5, 8171-8180.	3.2	115
101	Conversion of cellulose rich municipal solid waste blends using ionic liquids: feedstock convertibility and process scale-up. RSC Advances, 2017, 7, 36585-36593.	1.7	16
102	1-Ethyl-3-methylimidazolium tolerance and intracellular lipid accumulation of 38 oleaginous yeast species. Applied Microbiology and Biotechnology, 2017, 101, 8621-8631.	1.7	9
103	Comparison of soil biosolarization with mesophilic and thermophilic solid digestates on soil microbial quantity and diversity. Applied Soil Ecology, 2017, 119, 183-191.	2.1	18
104	Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments. Biotechnology for Biofuels, 2017, 10, 35.	6.2	18
105	Impact of lignin polymer backbone esters on ionic liquid pretreatment of poplar. Biotechnology for Biofuels, 2017, 10, 101.	6.2	48
106	Efficient dehydration and recovery of ionic liquid after lignocellulosic processing using pervaporation. Biotechnology for Biofuels, 2017, 10, 154.	6.2	72
107	Catalytic transfer hydrogenolysis of ionic liquid processed biorefinery lignin to phenolic compounds. Green Chemistry, 2017, 19, 215-224.	4.6	70
108	Sequential enzymatic saccharification and fermentation of ionic liquid and organosolv pretreated agave bagasse for ethanol production. Bioresource Technology, 2017, 225, 191-198.	4.8	44

#	Article	IF	CITATIONS
109	Dynamic changes of substrate reactivity and enzyme adsorption on partially hydrolyzed cellulose. Biotechnology and Bioengineering, 2017, 114, 503-515.	1.7	24
110	Reply to Kiser: Dioxygen binding in NOV1 crystal structures. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E6029-E6030.	3.3	4
111	Expression of naturally ionic liquid-tolerant thermophilic cellulases in Aspergillus niger. PLoS ONE, 2017, 12, e0189604.	1.1	13
112	Generation of a platform strain for ionic liquid tolerance using adaptive laboratory evolution. Microbial Cell Factories, 2017, 16, 204.	1.9	60
113	Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 2017, 10, 241.	6.2	150
114	Low cost ionic liquid–water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discussions, 2017, 206, 93-112.	1.6	64
115	SbCOMT (Bmr12) is involved in the biosynthesis of tricin-lignin in sorghum. PLoS ONE, 2017, 12, e0178160.	1.1	59
116	Expression of S-adenosylmethionine Hydrolase in Tissues Synthesizing Secondary Cell Walls Alters Specific Methylated Cell Wall Fractions and Improves Biomass Digestibility. Frontiers in Bioengineering and Biotechnology, 2016, 4, 58.	2.0	8
117	Evaluation of Relationships between Growth Rate, Tree Size, Lignocellulose Composition, and Enzymatic Saccharification in Interspecific Corymbia Hybrids and Parental Taxa. Frontiers in Plant Science, 2016, 7, 1705.	1.7	1
118	Structural features affecting the enzymatic digestibility of pine wood pretreated with ionic liquids. Biotechnology and Bioengineering, 2016, 113, 540-549.	1.7	52
119	CO2 enabled process integration for the production of cellulosic ethanol using bionic liquids. Energy and Environmental Science, 2016, 9, 2822-2834.	15.6	63
120	Effect of aging on lignin content, composition and enzymatic saccharification in Corymbia hybrids and parental taxa between years 9 and 12. Biomass and Bioenergy, 2016, 93, 50-59.	2.9	17
121	Structure and mechanism of NOV1, a resveratrol-cleaving dioxygenase. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14324-14329.	3.3	50
122	lonic Liquids Impact the Bioenergy Feedstock-Degrading Microbiome and Transcription of Enzymes Relevant to Polysaccharide Hydrolysis. MSystems, 2016, $1, \dots$	1.7	15
123	Enrichment of microbial communities tolerant to the ionic liquids tetrabutylphosphonium chloride and tributylethylphosphonium diethylphosphate. Applied Microbiology and Biotechnology, 2016, 100, 5639-5652.	1.7	6
124	Nonâ€nvasive imaging of cellulose microfibril orientation within plant cell walls by polarized Raman microspectroscopy. Biotechnology and Bioengineering, 2016, 113, 82-90.	1.7	21
125	Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin \hat{l}^2 -Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. Journal of Biological Chemistry, 2016, 291, 10228-10238.	1.6	44
126	Evaluation of agave bagasse recalcitrance using AFEXâ,,¢, autohydrolysis, and ionic liquid pretreatments. Bioresource Technology, 2016, 211, 216-223.	4.8	74

#	Article	IF	Citations
127	Development of an E. coli strain for one-pot biofuel production from ionic liquid pretreated cellulose and switchgrass. Green Chemistry, 2016, 18, 4189-4197.	4.6	52
128	Switchable ionic liquids based on di-carboxylic acids for one-pot conversion of biomass to an advanced biofuel. Green Chemistry, 2016, 18, 4012-4021.	4.6	31
129	Fractional pretreatment of raw and calcium oxalate-extracted agave bagasse using ionic liquid and alkaline hydrogen peroxide. Biomass and Bioenergy, 2016, 91, 48-55.	2.9	29
130	Activation of lignocellulosic biomass for higher sugar yields using aqueous ionic liquid at low severity process conditions. Biotechnology for Biofuels, 2016, 9, 160.	6.2	44
131	Rapid room temperature solubilization and depolymerization of polymeric lignin at high loadings. Green Chemistry, 2016, 18, 6012-6020.	4.6	60
132	Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 2016, 18, 6046-6062.	4.6	84
133	Comparative Community Proteomics Demonstrates the Unexpected Importance of Actinobacterial Glycoside Hydrolase Family 12 Protein for Crystalline Cellulose Hydrolysis. MBio, 2016, 7, .	1.8	17
134	Sugars Production for Green Chemistry from 2 nd ÂGeneration Crop (Arundo donax) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
135	Ionic liquid-tolerant microorganisms and microbial communities for lignocellulose conversion to bioproducts. Applied Microbiology and Biotechnology, 2016, 100, 10237-10249.	1.7	41
136	Impact of engineered lignin composition on biomass recalcitrance and ionic liquid pretreatment efficiency. Green Chemistry, 2016, 18, 4884-4895.	4.6	64
137	The role of organic matter amendment level on soil heating, organic acid accumulation, and development of bacterial communities in solarized soil. Applied Soil Ecology, 2016, 106, 37-46.	2.1	48
138	Revealing the thermal sensitivity of lignin during glycerol thermal processing through structural analysis. RSC Advances, 2016, 6, 30234-30246.	1.7	22
139	Next-generation ammonia pretreatment enhances cellulosic biofuel production. Energy and Environmental Science, 2016, 9, 1215-1223.	15.6	169
140	Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of \hat{l}^2 -Aryl Ether Bonds in Lignin. Journal of Biological Chemistry, 2016, 291, 5234-5246.	1.6	40
141	Transforming biomass conversion with ionic liquids: process intensification and the development of a high-gravity, one-pot process for the production of cellulosic ethanol. Energy and Environmental Science, 2016, 9, 1042-1049.	15.6	201
142	MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics, 2016, 32, 605-607.	1.8	1,574
143	Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME Journal, 2016, 10, 833-845.	4.4	62
144	The DOE Bioenergy Research Centers: History, Operations, and Scientific Output. Bioenergy Research, 2015, 8, 881-896.	2.2	8

#	Article	IF	Citations
145	Restricting lignin and enhancing sugar deposition in secondary cell walls enhances monomeric sugar release after low temperature ionic liquid pretreatment. Biotechnology for Biofuels, 2015, 8, 95.	6.2	9
146	Preservation of microbial communities enriched on lignocellulose under thermophilic and high-solid conditions. Biotechnology for Biofuels, 2015, 8, 206.	6.2	22
147	Development of a High Throughput Platform for Screening Glycoside Hydrolases Based on Oxime-NIMS. Frontiers in Bioengineering and Biotechnology, 2015, 3, 153.	2.0	14
148	Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels. Frontiers in Bioengineering and Biotechnology, 2015, 3, 182.	2.0	109
149	Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels. Frontiers in Bioengineering and Biotechnology, 2015, 3, 190.	2.0	18
150	Genomic Analysis of Xylose Metabolism in Members of the Deinoccocus-Thermus Phylum from Thermophilic Biomass-Deconstructing Bacterial Consortia. Bioenergy Research, 2015, 8, 1031-1038.	2.2	4
151	Recent innovations in analytical methods for the qualitative and quantitative assessment of lignin. Renewable and Sustainable Energy Reviews, 2015, 49, 871-906.	8.2	282
152	Expression of a bacterial 3â€dehydroshikimate dehydratase reduces lignin content and improves biomass saccharification efficiency. Plant Biotechnology Journal, 2015, 13, 1241-1250.	4.1	90
153	High-Throughput Prediction of Acacia and Eucalypt Lignin Syringyl/Guaiacyl Content Using FT-Raman Spectroscopy and Partial Least Squares Modeling. Bioenergy Research, 2015, 8, 953-963.	2.2	9
154	Scale-Up of Ionic Liquid-Based Fractionation of Single and Mixed Feedstocks. Bioenergy Research, 2015, 8, 982-991.	2.2	33
155	Calorimetric evaluation indicates that lignin conversion to advanced biofuels is vital to improving energy yields. RSC Advances, 2015, 5, 51092-51101.	1.7	11
156	Impact of Pretreatment Technologies on Saccharification and Isopentenol Fermentation of Mixed Lignocellulosic Feedstocks. Bioenergy Research, 2015, 8, 1004-1013.	2.2	40
157	An Investigation on the Economic Feasibility of Macroalgae as a Potential Feedstock for Biorefineries. Bioenergy Research, 2015, 8, 1046-1056.	2.2	92
158	Blending municipal solid waste with corn stover for sugar production using ionic liquid process. Bioresource Technology, 2015, 186, 200-206.	4.8	28
159	Characterization of agave bagasse as a function ofÂionic liquid pretreatment. Biomass and Bioenergy, 2015, 75, 180-188.	2.9	74
160	Comparison of Different Biomass Pretreatment Techniques and Their Impact on Chemistry and Structure. Frontiers in Energy Research, 2015, 2, .	1.2	118
161	Theoretical Insights into the Role of Water in the Dissolution of Cellulose Using IL/Water Mixed Solvent Systems. Journal of Physical Chemistry B, 2015, 119, 14339-14349.	1.2	46
162	Assay for lignin breakdown based on lignin films: insights into the Fenton reaction with insoluble lignin. Green Chemistry, 2015, 17, 4830-4845.	4.6	10

#	Article	IF	CITATIONS
163	How Alkyl Chain Length of Alcohols Affects Lignin Fractionation and Ionic Liquid Recycle During Lignocellulose Pretreatment. Bioenergy Research, 2015, 8, 973-981.	2.2	17
164	Biocomposite adhesion without added resin: understanding the chemistry of the direct conversion of wood into adhesives. RSC Advances, 2015, 5, 67267-67276.	1.7	6
165	Design of low-cost ionic liquids for lignocellulosic biomass pretreatment. Green Chemistry, 2015, 17, 1728-1734.	4.6	384
166	A droplet-to-digital (D2D) microfluidic device for single cell assays. Lab on A Chip, 2015, 15, 225-236.	3.1	70
167	Optimization of renewable pinene production from the conversion of macroalgae Saccharina latissima. Bioresource Technology, 2015, 184, 415-420.	4.8	24
168	CHAPTER 3. Ionic Liquid Pretreatment of Lignocellulosic Biomass for Biofuels and Chemicals. RSC Green Chemistry, 2015, , 65-94.	0.0	14
169	Development of a Native Escherichia coli Induction System for Ionic Liquid Tolerance. PLoS ONE, 2014, 9, e101115.	1.1	31
170	Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnology for Biofuels, 2014, 7, 495.	6.2	40
171	Discovery of two novel \hat{l}^2 -glucosidases from an Amazon soil metagenomic library. FEMS Microbiology Letters, 2014, 351, 147-155.	0.7	25
172	An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nature Communications, 2014, 5, 3490.	5.8	85
173	<i>Bacillus coagulans</i> tolerance to 1â€ethylâ€3â€methylimidazoliumâ€based ionic liquids in aqueous and solidâ€state thermophilic culture. Biotechnology Progress, 2014, 30, 311-316.	1.3	19
174	Yeast tolerance to the ionic liquid 1-ethyl-3-methylimidazolium acetate. FEMS Yeast Research, 2014, 14, 1286-1294.	1.1	36
175	Modifying plants for biofuel and biomaterial production. Plant Biotechnology Journal, 2014, 12, 1246-1258.	4.1	82
176	Characterization of bacterial communities in solarized soil amended with lignocellulosic organic matter. Applied Soil Ecology, 2014, 73, 97-104.	2.1	37
177	Assessment of Lignocellulosic Biomass Using Analytical Spectroscopy: an Evolution to High-Throughput Techniques. Bioenergy Research, 2014, 7, 1-23.	2.2	111
178	Discovery and characterization of ionic liquid-tolerant thermophilic cellulases from a switchgrass-adapted microbial community. Biotechnology for Biofuels, 2014, 7, 15.	6.2	65
179	Rapid Kinetic Characterization of Glycosyl Hydrolases Based on Oxime Derivatization and Nanostructure-Initiator Mass Spectrometry (NIMS). ACS Chemical Biology, 2014, 9, 1470-1479.	1.6	36
180	Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Systematic and Applied Microbiology, 2014, 37, 60-67.	1.2	103

#	Article	IF	Citations
181	Efficient biomass pretreatment using ionic liquids derived from lignin and hemicellulose. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3587-95.	3.3	285
182	Photoionization Mass Spectrometric Measurements of Initial Reaction Pathways in Low-Temperature Oxidation of 2,5-Dimethylhexane. Journal of Physical Chemistry A, 2014, 118, 10188-10200.	1.1	19
183	Substrate-Specific Development of Thermophilic Bacterial Consortia by Using Chemically Pretreated Switchgrass. Applied and Environmental Microbiology, 2014, 80, 7423-7432.	1.4	27
184	Understanding the role of water during ionic liquid pretreatment of lignocellulose: co-solvent or anti-solvent?. Green Chemistry, 2014, 16, 3830-3840.	4.6	129
185	Phylogenomically Guided Identification of Industrially Relevant GH1 \hat{I}^2 -Glucosidases through DNA Synthesis and Nanostructure-Initiator Mass Spectrometry. ACS Chemical Biology, 2014, 9, 2082-2091.	1.6	78
186	Understanding pretreatment efficacy of four cholinium and imidazolium ionic liquids by chemistry and computation. Green Chemistry, 2014, 16, 2546-2557.	4.6	138
187	High-throughput prediction of eucalypt lignin syringyl/guaiacyl content using multivariate analysis: a comparison between mid-infrared, near-infrared, and Raman spectroscopies for model development. Biotechnology for Biofuels, 2014, 7, 93.	6.2	41
188	MaxBin: an automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm. Microbiome, 2014, 2, 26.	4.9	521
189	Comparison of enzymatic reactivity of corn stover solids prepared by dilute acid, AFEXâ,,¢, and ionic liquid pretreatments. Biotechnology for Biofuels, 2014, 7, 71.	6.2	81
190	Understanding cost drivers and economic potential of two variants of ionic liquid pretreatment for cellulosic biofuel production. Biotechnology for Biofuels, 2014, 7, 86.	6.2	120
191	Lignin fate and characterization during ionic liquid biomass pretreatment for renewable chemicals and fuels production. Green Chemistry, 2014, 16, 1236-1247.	4.6	137
192	Lignocellulosic ethanol production without enzymes – Technoeconomic analysis of ionic liquid pretreatment followed by acidolysis. Bioresource Technology, 2014, 158, 294-299.	4.8	33
193	Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover. PLoS ONE, 2014, 9, e107499.	1.1	91
194	Cell Sorting. , 2014, , 1-15.		0
195	Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates. Biotechnology for Biofuels, 2013, 6, 93.	6.2	63
196	Comparison of sugar content for ionic liquid pretreated Douglas-fir woodchips and forestry residues. Biotechnology for Biofuels, 2013, 6, 61.	6.2	30
197	Impact of high biomass loading on ionic liquid pretreatment. Biotechnology for Biofuels, 2013, 6, 52.	6.2	85
198	Comparing the Recalcitrance of Eucalyptus, Pine, and Switchgrass Using Ionic Liquid and Dilute Acid Pretreatments. Bioenergy Research, 2013, 6, 14-23.	2.2	99

#	Article	IF	Citations
199	One-pot ionic liquid pretreatment and saccharification of switchgrass. Green Chemistry, 2013, 15, 2579.	4.6	175
200	Understanding the impact of ionic liquid pretreatment on cellulose and lignin via thermochemical analysis. Biomass and Bioenergy, 2013, 54, 276-283.	2.9	55
201	Scale-up and evaluation of high solid ionic liquid pretreatment and enzymatic hydrolysis of switchgrass. Biotechnology for Biofuels, 2013, 6, 154.	6.2	94
202	Unveiling high-resolution, tissue specific dynamic changes in corn stover during ionic liquid pretreatment. RSC Advances, 2013, 3, 2017-2027.	1.7	51
203	Biochemical production of ethanol and fatty acid ethyl esters from switchgrass: A comparative analysis of environmental and economic performance. Biomass and Bioenergy, 2013, 49, 49-62.	2.9	17
204	Production and extraction of sugars from switchgrass hydrolyzed in ionic liquids. Biotechnology for Biofuels, 2013, 6, 39.	6.2	62
205	Acid enhanced ionic liquid pretreatment of biomass. Green Chemistry, 2013, 15, 1264.	4.6	40
206	Survey of renewable chemicals produced from lignocellulosic biomass during ionic liquid pretreatment. Biotechnology for Biofuels, 2013, 6, 14.	6.2	151
207	Comparison of the impact of ionic liquid pretreatment on recalcitrance of agave bagasse and switchgrass. Bioresource Technology, 2013, 127, 18-24.	4.8	82
208	Impact of mixed feedstocks and feedstock densification on ionic liquid pretreatment efficiency. Biofuels, 2013, 4, 63-72.	1.4	80
209	From Soil to Structure, a Novel Dimeric β-Glucosidase Belonging to Glycoside Hydrolase Family 3 Isolated from Compost Using Metagenomic Analysis. Journal of Biological Chemistry, 2013, 288, 14985-14992.	1.6	42
210	High throughput nanostructure-initiator mass spectrometry screening of microbial growth conditions for maximal \hat{l}^2 -glucosidase production. Frontiers in Microbiology, 2013, 4, 365.	1.5	11
211	Community dynamics of celluloseâ€adapted thermophilic bacterial consortia. Environmental Microbiology, 2013, 15, 2573-2587.	1.8	77
212	Proteogenomic Analysis of a Thermophilic Bacterial Consortium Adapted to Deconstruct Switchgrass. PLoS ONE, 2013, 8, e68465.	1.1	62
213	Improved Activity of a Thermophilic Cellulase, Cel5A, from Thermotoga maritima on Ionic Liquid Pretreated Switchgrass. PLoS ONE, 2013, 8, e79725.	1.1	20
214	Discovery of Microorganisms and Enzymes Involved in High-Solids Decomposition of Rice Straw Using Metagenomic Analyses. PLoS ONE, 2013, 8, e77985.	1.1	50
215	Mechanical Stress Analysis as a Method to Understand the Impact of Genetically Engineered Rice and Arabidopsis Plants. Industrial Biotechnology, 2012, 8, 238-244.	0.5	6
216	Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, <i>Enterobacter lignolyticus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2173-82.	3.3	85

#	Article	IF	Citations
217	Tracing Determinants of Dual Substrate Specificity in Glycoside Hydrolase Family 5. Journal of Biological Chemistry, 2012, 287, 25335-25343.	1.6	39
218	Anaerobic Decomposition of Switchgrass by Tropical Soil-Derived Feedstock-Adapted Consortia. MBio, 2012, 3, .	1.8	19
219	The impact of ionic liquid pretreatment on the chemistry and enzymatic digestibility of Pinus radiata compression wood. Green Chemistry, 2012, 14, 778.	4.6	87
220	Low-temperature combustion chemistry of biofuels: pathways in the initial low-temperature (550) Tj ETQq0 0 0	rgBT/Ove	lock 10 Tf 50
221	Simulations Reveal Conformational Changes of Methylhydroxyl Groups during Dissolution of Cellulose I _{\hat{l}^2} in Ionic Liquid 1-Ethyl-3-methylimidazolium Acetate. Journal of Physical Chemistry B, 2012, 116, 8131-8138.	1.2	61
222	Glycoside Hydrolases from a targeted Compost Metagenome, activity-screening and functional characterization. BMC Biotechnology, 2012, 12, 38.	1.7	48
223	Thermoascus aurantiacus is a promising source of enzymes for biomass deconstruction under thermophilic conditions. Biotechnology for Biofuels, 2012, 5, 54.	6.2	88
224	Bioenergy from plants and plant residues. , 2012, , 495-505.		9
225	Understanding changes in lignin of Panicum virgatum and Eucalyptus globulus as a function of ionic liquid pretreatment. Bioresource Technology, 2012, 126, 156-161.	4.8	60
226	Impact of Ionic Liquid Pretreatment Conditions on Cellulose Crystalline Structure Using 1-Ethyl-3-methylimidazolium Acetate. Journal of Physical Chemistry B, 2012, 116, 10049-10054.	1.2	121
227	Effect of Ionic Liquid Treatment on the Structures of Lignins in Solutions: Molecular Subunits Released from Lignin. Langmuir, 2012, 28, 11850-11857.	1.6	47
228	Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks. PLoS ONE, 2012, 7, e52820.	1.1	32
229	Substrate perturbation alters the glycoside hydrolase activities and community composition of switchgrassâ€adapted bacterial consortia. Biotechnology and Bioengineering, 2012, 109, 1140-1145.	1.7	17
230	Characterization of the acylglycerols and resulting biodiesel derived from vegetable oil and microalgae ($<$ i>Thalassiosira pseudonana $<$ i> and $<$ i>Phaeodactylum tricornutum $<$ i>). Biotechnology and Bioengineering, 2012, 109, 1146-1154.	1.7	25
231	Interactions of Endoglucanases with Amorphous Cellulose Films Resolved by Neutron Reflectometry and Quartz Crystal Microbalance with Dissipation Monitoring. Langmuir, 2012, 28, 8348-8358.	1.6	29
232	Co-production of ethanol, biogas, protein fodder and natural fertilizer in organic farming – Evaluation of a concept for a farm-scale biorefinery. Bioresource Technology, 2012, 104, 440-446.	4.8	44
233	Biosynthesis and incorporation of sideâ€chainâ€truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnology Journal, 2012, 10, 609-620.	4.1	140
234	Rapid determination of syringyl: Guaiacyl ratios using FTâ€Raman spectroscopy. Biotechnology and Bioengineering, 2012, 109, 647-656.	1.7	60

#	Article	IF	Citations
235	The challenge of enzyme cost in the production of lignocellulosic biofuels. Biotechnology and Bioengineering, 2012, 109, 1083-1087.	1.7	792
236	Nanostructureâ€Initiator Mass Spectrometry (NIMS) for the Analysis of Enzyme Activities. Current Protocols in Chemical Biology, 2012, 4, 123-142.	1.7	3
237	A Thermophilic Ionic Liquid-Tolerant Cellulase Cocktail for the Production of Cellulosic Biofuels. PLoS ONE, 2012, 7, e37010.	1.1	98
238	Neutron Reflectometry and QCM-D Study of the Interaction of Cellulases with Films of Amorphous Cellulose. Biomacromolecules, 2011, 12, 2216-2224.	2.6	43
239	Glycoside Hydrolase Activities of Thermophilic Bacterial Consortia Adapted to Switchgrass. Applied and Environmental Microbiology, 2011, 77, 5804-5812.	1.4	99
240	A facile method for the recovery of ionic liquid and lignin from biomass pretreatment. Green Chemistry, 2011, 13, 3255.	4.6	124
241	Impact of ionic liquid pretreated plant biomass on Saccharomyces cerevisiae growth and biofuel production. Green Chemistry, 2011, 13, 2743.	4.6	139
242	The effect of ionic liquid cation and anion combinations on the macromolecular structure of lignins. Green Chemistry, 2011, 13, 3375.	4.6	134
243	Molecular Dynamics Study of Polysaccharides in Binary Solvent Mixtures of an Ionic Liquid and Water. Journal of Physical Chemistry B, 2011, 115, 10251-10258.	1.2	80
244	Transition of Cellulose Crystalline Structure and Surface Morphology of Biomass as a Function of Ionic Liquid Pretreatment and Its Relation to Enzymatic Hydrolysis. Biomacromolecules, 2011, 12, 933-941.	2.6	373
245	In vivo lipidomics using single-cell Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3809-3814.	3.3	378
246	Synthesis of three advanced biofuels from ionic liquid-pretreated switchgrass using engineered <i>Escherichia coli</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19949-19954.	3.3	333
247	Biomass deconstruction to sugars. Biotechnology Journal, 2011, 6, 1086-1102.	1.8	140
248	Enzymatic hydrolysis of cellulose by the cellobiohydrolase domain of CelB from the hyperthermophilic bacterium Caldicellulosiruptor saccharolyticus. Bioresource Technology, 2011, 102, 5988-5994.	4.8	33
249	Understanding tissue specific compositions of bioenergy feedstocks through hyperspectral Raman imaging. Biotechnology and Bioengineering, 2011, 108, 286-295.	1.7	65
250	Bioenergy feedstockâ€specific enrichment of microbial populations during highâ€solids thermophilic deconstruction. Biotechnology and Bioengineering, 2011, 108, 2088-2098.	1.7	23
251	Technoâ€economic analysis of a lignocellulosic ethanol biorefinery with ionic liquid preâ€treatment. Biofuels, Bioproducts and Biorefining, 2011, 5, 562-569.	1.9	303
252	High-throughput enzymatic hydrolysis of lignocellulosic biomass via in-situ regeneration. Bioresource Technology, 2011, 102, 1329-1337.	4.8	26

#	Article	IF	Citations
253	Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 2011, 102, 6928-6936.	4.8	203
254	Opportunities and challenges in advanced biofuel production: the importance of synthetic biology and combustion science. Biofuels, 2011, 2, 5-7.	1.4	7
255	Monitoring and Analyzing Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass (Panicum virgatum L.). Bioenergy Research, 2010, 3, 134-145.	2.2	114
256	Strategies for Enhancing the Effectiveness of Metagenomic-based Enzyme Discovery in Lignocellulolytic Microbial Communities. Bioenergy Research, 2010, 3, 146-158.	2.2	100
257	Recovery of Sugars from Ionic Liquid Biomass Liquor by Solvent Extraction. Bioenergy Research, 2010, 3, 123-133.	2.2	112
258	Advances in modifying lignin for enhanced biofuel production. Current Opinion in Plant Biology, 2010, 13, 312-319.	3.5	211
259	Molecular simulations provide new insights into the role of the accessory immunoglobulinâ€ike domain of Cel9A. FEBS Letters, 2010, 584, 3431-3435.	1.3	17
260	Technoeconomic analysis of biofuels: A wiki-based platform for lignocellulosic biorefineries. Biomass and Bioenergy, 2010, 34, 1914-1921.	2.9	153
261	Comparison of dilute acid and ionic liquid pretreatment of switchgrass: Biomass recalcitrance, delignification and enzymatic saccharification. Bioresource Technology, 2010, 101, 4900-4906.	4.8	926
262	Microfluidic Glycosyl Hydrolase Screening for Biomass-to-Biofuel Conversion. Analytical Chemistry, 2010, 82, 9513-9520.	3.2	14
263	lonic liquid tolerant hyperthermophilic cellulases for biomass pretreatment and hydrolysis. Green Chemistry, 2010, 12, 338.	4.6	211
264	Understanding the impact of ionic liquid pretreatment on eucalyptus. Biofuels, 2010, 1, 33-46.	1.4	129
265	Understanding the Interactions of Cellulose with Ionic Liquids: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2010, 114, 4293-4301.	1.2	299
266	Biochemical characterization and crystal structure of endoglucanase Cel5A from the hyperthermophilic Thermotoga maritima. Journal of Structural Biology, 2010, 172, 372-379.	1.3	65
267	Targeted Discovery of Glycoside Hydrolases from a Switchgrass-Adapted Compost Community. PLoS ONE, 2010, 5, e8812.	1.1	170
268	Visualization of biomass solubilization and cellulose regeneration during ionic liquid pretreatment of switchgrass. Biotechnology and Bioengineering, 2009, 104, 68-75.	1.7	354
269	Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. Journal of Applied Phycology, 2009, 21, 669-681.	1.5	149
270	Sample concentration and impedance detection on a microfluidic polymer chip. Biomedical Microdevices, 2008, 10, 661-670.	1.4	79

#	Article	IF	Citations
271	Performance impact of dynamic surface coatings on polymeric insulator-based dielectrophoretic particle separators. Analytical and Bioanalytical Chemistry, 2008, 390, 847-855.	1.9	47
272	Next-generation biomass feedstocks for biofuel production. Genome Biology, 2008, 9, 242.	13.9	144
273	Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute. ACS Chemical Biology, 2008, 3, 17-20.	1.6	44
274	Dependence of amine-accelerated silicate condensation on amine structure. Journal of Materials Chemistry, 2007, 17, 2113.	6.7	30
275	Low-distortion, high-strength bonding of thermoplastic microfluidic devices employing case-II diffusion-mediated permeant activation. Lab on A Chip, 2007, 7, 1825.	3.1	50
276	Computational and Spectroscopic Studies of Dichlorofluoroethane Hydrate Structure and Stability. Journal of Physical Chemistry C, 2007, 111, 16787-16795.	1.5	9
277	Silica Particle Formation in Confined Environments via Bioinspired Polyamine Catalysis at Near-Neutral pH. Small, 2007, 3, 58-62.	5.2	36
278	A Comparison of Insulator-Based Dielectrophoretic Devices for the Monitoring and Separation of Waterborne Pathogens as a Function of Microfabrication Technique. ACS Symposium Series, 2007, , 133-157.	0.5	0
279	Vibrational Spectra of Methane Clathrate Hydrates from Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2006, 110, 6428-6431.	1.2	50
280	Injection molded microfluidic devices for biological sample separation and detection., 2006, 6109, 610901.		2
281	The Development of Polymeric Devices as Dielectrophoretic Separators and Concentrators. MRS Bulletin, 2006, 31, 120-124.	1.7	45
282	Dielectrophoretic Particle Manipulation in Ridged Microchannels., 2006,,.		0
283	The zeta potential of cyclo-olefin polymer microchannels and its effects on insulative (electrodeless) dielectrophoresis particle trapping devices. Electrophoresis, 2005, 26, 1792-1799.	1.3	93
284	Polymeric microfluidic devices for the monitoring and separation of water-borne pathogens utilizing insulative dielectrophoresis., 2005, 5715, 59.		6
285	Thermally Cleavable Surfactants Based on Furanâ "Maleimide Dielsâ" Alder Adducts. Langmuir, 2005, 21, 3259-3266.	1.6	75
286	An insulator-based (electrodeless) dielectrophoretic concentrator for microbes in water. Journal of Microbiological Methods, 2005, 62, 317-326.	0.7	163
287	Metathesis Depolymerization for Removable Surfactant Templates. Langmuir, 2005, 21, 9365-9373.	1.6	7
288	Automated Sample Preparation System for Rapid Biological Threat Detection. , 2005, , .		0

#	Article	IF	CITATIONS
289	Insulator-based dielectrophoresis for the selective concentration and separation of live bacteria in water. Electrophoresis, 2004, 25, 1695-1704.	1.3	313
290	Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators. Analytical Chemistry, 2004, 76, 1571-1579.	3.2	429
291	Small Angle Neutron Scattering Study of Microstructural Transitions in a Surfactant-Based Gel Mesophase. Langmuir, 2002, 18, 624-632.	1.6	45
292	Morphology of CdS Nanocrystals Synthesized in a Mixed Surfactant System. Nano Letters, 2002, 2, 263-268.	4.5	207
293	Revisiting Theoretical Tools and Approaches for the Valorization of Recalcitrant Lignocellulosic Biomass to Value-Added Chemicals. Frontiers in Energy Research, 0, 10, .	1.2	9