
Jennifer A Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1080659/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
2	THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2015, 219, 12.	7.7	1,877
3	SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS. Astronomical Journal, 2011, 142, 72.	4.7	1,700
4	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	7.7	1,202
5	THE EIGHTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST DATA FROM SDSS-III. Astrophysical Journal, Supplement Series, 2011, 193, 29.	7.7	1,166
6	THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY. Astrophysical Journal, Supplement Series, 2012, 203, 21.	7.7	1,158
7	Sloan Digital Sky Survey IV: Mapping the Milky Way, Nearby Galaxies, and the Distant Universe. Astronomical Journal, 2017, 154, 28.	4.7	1,100
8	The Apache Point Observatory Galactic Evolution Experiment (APOGEE). Astronomical Journal, 2017, 154, 94.	4.7	1,065
9	SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g</i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.	4.7	905
10	The 16th Data Release of the Sloan Digital Sky Surveys: First Release from the APOGEE-2 Southern Survey and Full Release of eBOSS Spectra. Astrophysical Journal, Supplement Series, 2020, 249, 3.	7.7	826
11	THE TENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT. Astrophysical Journal, Supplement Series, 2014, 211, 17.	7.7	820
12	The Fourteenth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the Extended Baryon Oscillation Spectroscopic Survey and from the Second Phase of the Apache Point Observatory Galactic Evolution Experiment. Astrophysical Journal, Supplement Series, 2018, 235, 42.	7.7	796
13	ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE. Astronomical Journal, 2016, 151, 144.	4.7	497
14	CHEMICAL CARTOGRAPHY WITH APOGEE: METALLICITY DISTRIBUTION FUNCTIONS AND THE CHEMICAL STRUCTURE OF THE MILKY WAY DISK. Astrophysical Journal, 2015, 808, 132.	4.5	468
15	The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory. Astrophysical Journal, Supplement Series, 2017, 233, 25.	7.7	406
16	The Seventeenth Data Release of the Sloan Digital Sky Surveys: Complete Release of MaNGA, MaStar, and APOGEE-2 Data. Astrophysical Journal, Supplement Series, 2022, 259, 35.	7.7	405
17	ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY. Astronomical Journal, 2015, 150, 148.	4.7	344
18	TARGET SELECTION FOR THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT (APOGEE). Astronomical Journal, 2013, 146, 81.	4.7	312

JENNIFER A JOHNSON

#	Article	IF	CITATIONS
19	The Fifteenth Data Release of the Sloan Digital Sky Surveys: First Release of MaNGA-derived Quantities, Data Visualization Tools, and Stellar Library. Astrophysical Journal, Supplement Series, 2019, 240, 23.	7.7	299
20	Detailed Abundances for 28 Metalâ€poor Stars: Stellar Relics in the Milky Way. Astrophysical Journal, 2008, 681, 1524-1556.	4.5	269
21	THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE <i>KEPLER</i> FIELDS. Astrophysical Journal, Supplement Series, 2014, 215, 19.	7.7	268
22	THE SEGUE STELLAR PARAMETER PIPELINE. II. VALIDATION WITH GALACTIC GLOBULAR AND OPEN CLUSTERS. Astronomical Journal, 2008, 136, 2050-2069.	4.7	259
23	APOGEE Data Releases 13 and 14: Data and Analysis. Astronomical Journal, 2018, 156, 125.	4.7	220
24	THE SEGUE STELLAR PARAMETER PIPELINE. III. COMPARISON WITH HIGH-RESOLUTION SPECTROSCOPY OF SDSS/SEGUE FIELD STARS. Astronomical Journal, 2008, 136, 2070-2082.	4.7	208
25	The origin of accreted stellar halo populations in the Milky Way using APOGEE, <i>Gaia</i> , and the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3426-3442.	4.4	199
26	The Second APOKASC Catalog: The Empirical Approach. Astrophysical Journal, Supplement Series, 2018, 239, 32.	7.7	183
27	A noninteracting low-mass black hole–giant star binary system. Science, 2019, 366, 637-640.	12.6	182
28	THE APOGEE RED-CLUMP CATALOG: PRECISE DISTANCES, VELOCITIES, AND HIGH-RESOLUTION ELEMENTAL ABUNDANCES OVER A LARGE AREA OF THE MILKY WAY'S DISK. Astrophysical Journal, 2014, 790, 127.	4.5	181
29	TRACING CHEMICAL EVOLUTION OVER THE EXTENT OF THE MILKY WAY'S DISK WITH APOGEE RED CLUMP STARS. Astrophysical Journal, 2014, 796, 38.	4.5	181
30	Chemical tagging with APOGEE: discovery of a large population of N-rich stars in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 465, 501-524.	4.4	150
31	Bayesian distances and extinctions for giants observed by Kepler and APOGEE. Monthly Notices of the Royal Astronomical Society, 2014, 445, 2758-2776.	4.4	148
32	CHEMICAL CARTOGRAPHY WITH APOGEE: LARGE-SCALE MEAN METALLICITY MAPS OF THE MILKY WAY DISK. Astronomical Journal, 2014, 147, 116.	4.7	134
33	Young α-enriched giant stars in the solar neighbourhood. Monthly Notices of the Royal Astronomical Society, 2015, 451, 2230-2243.	4.4	133
34	Galactic Globular and Open Clusters in the Sloan Digital Sky Survey. I. Crowdedâ€Field Photometry and Cluster Fiducial Sequences in <i>ugriz</i> . Astrophysical Journal, Supplement Series, 2008, 179, 326-354.	7.7	132
35	The First APOKASC Catalog of Kepler Dwarf and Subgiant Stars. Astrophysical Journal, Supplement Series, 2017, 233, 23.	7.7	121
36	THE STELLAR METALLICITY DISTRIBUTION FUNCTION OF THE GALACTIC HALO FROM SDSS PHOTOMETRY. Astrophysical Journal, 2013, 763, 65.	4.5	113

Jennifer A Johnson

#	Article	IF	CITATIONS
37	CHEMICAL ABUNDANCES IN FIELD RED GIANTS FROM HIGH-RESOLUTION <i>H</i> -BAND SPECTRA USING THE APOGEE SPECTRAL LINELIST. Astrophysical Journal, 2013, 765, 16.	4.5	107
38	Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models. Astrophysical Journal, 2017, 835, 224.	4.5	107
39	Homogeneous analysis of globular clusters from the APOGEE survey with the BACCHUS code – II. The Southern clusters and overview. Monthly Notices of the Royal Astronomical Society, 2020, 492, 1641-1670.	4.4	103
40	The Apache Point Observatory Galactic Evolution Experiment (APOGEE) high-resolution near-infrared multi-object fiber spectrograph. Proceedings of SPIE, 2010, , .	0.8	101
41	Stellar Multiplicity Meets Stellar Evolution and Metallicity: The APOGEE View. Astrophysical Journal, 2018, 854, 147.	4.5	100
42	THE OPEN CLUSTER CHEMICAL ANALYSIS AND MAPPING SURVEY: LOCAL GALACTIC METALLICITY GRADIENT WITH APOGEE USING SDSS DR10. Astrophysical Journal Letters, 2013, 777, L1.	8.3	92
43	Th Ages for Metalâ€poor Stars. Astrophysical Journal, 2001, 554, 888-902.	4.5	89
44	Chemical Cartography with APOGEE: Multi-element Abundance Ratios. Astrophysical Journal, 2019, 874, 102.	4.5	85
45	TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND <i>KEPLER</i> . Astrophysical Journal Letters, 2014, 785, L28.	8.3	84
46	OSCILLATING RED GIANTS OBSERVED DURING CAMPAIGN 1 OF THE <i>KEPLER</i> K2 MISSION: NEW PROSPECTS FOR GALACTIC ARCHAEOLOGY. Astrophysical Journal Letters, 2015, 809, L3.	8.3	84
47	The Correlation between Mixing Length and Metallicity on the Giant Branch: Implications for Ages in the Gaia Era. Astrophysical Journal, 2017, 840, 17.	4.5	80
48	THE SEGUE K GIANT SURVEY. II. A CATALOG OF DISTANCE DETERMINATIONS FOR THE SEGUE K GIANTS IN THE GALACTIC HALO. Astrophysical Journal, 2014, 784, 170.	4.5	77
49	APOGEE chemical abundances of globular cluster giants in the inner Galaxy. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1010-1018.	4.4	71
50	THE METALLICITY DISTRIBUTION FUNCTIONS OF SEGUE G AND K DWARFS: CONSTRAINTS FOR DISK CHEMICAL EVOLUTION AND FORMATION. Astrophysical Journal, 2012, 761, 160.	4.5	66
51	Adding the s-Process Element Cerium to the APOGEE Survey: Identification and Characterization of Ce ii Lines in the H-band Spectral Window. Astrophysical Journal, 2017, 844, 145.	4.5	66
52	SODIUM AND OXYGEN ABUNDANCES IN THE OPEN CLUSTER NGC 6791 FROM APOGEE H-BAND SPECTROSCOPY. Astrophysical Journal Letters, 2015, 798, L41.	8.3	62
53	THE APACHE POINT OBSERVATORY GALACTIC EVOLUTION EXPERIMENT: FIRST DETECTION OF HIGH-VELOCITY MILKY WAY BAR STARS. Astrophysical Journal Letters, 2012, 755, L25.	8.3	56
54	THORIUM ABUNDANCES IN SOLAR TWINS AND ANALOGS: IMPLICATIONS FOR THE HABITABILITY OF EXTRASOLAR PLANETARY SYSTEMS. Astrophysical Journal, 2015, 806, 139.	4.5	56

JENNIFER A JOHNSON

#	Article	IF	CITATIONS
55	RAPID ROTATION OF LOW-MASS RED GIANTS USING APOKASC: A MEASURE OF INTERACTION RATES ON THE POST-MAIN-SEQUENCE. Astrophysical Journal, 2015, 807, 82.	4.5	53
56	Populating the periodic table: Nucleosynthesis of the elements. Science, 2019, 363, 474-478.	12.6	50
57	Final Targeting Strategy for the SDSS-IV APOGEE-2S Survey. Astronomical Journal, 2021, 162, 303.	4.7	46
58	Constraining Metallicity-dependent Mixing and Extra Mixing Using [C/N] in Alpha-rich Field Giants. Astrophysical Journal, 2019, 872, 137.	4.5	44
59	Final Targeting Strategy for the Sloan Digital Sky Survey IV Apache Point Observatory Galactic Evolution Experiment 2 North Survey. Astronomical Journal, 2021, 162, 302.	4.7	44
60	A UNIQUE STAR IN THE OUTER HALO OF THE MILKY WAY. Astrophysical Journal, 2009, 697, L63-L67.	4.5	38
61	The Similarity of Abundance Ratio Trends and Nucleosynthetic Patterns in the Milky Way Disk and Bulge. Astrophysical Journal, 2021, 909, 77.	4.5	36
62	SEGUE-2 LIMITS ON METAL-RICH OLD-POPULATION HYPERVELOCITY STARS IN THE GALACTIC HALO. Astrophysical Journal, 2010, 723, 812-817.	4.5	32
63	DISCOVERY OF A DYNAMICAL COLD POINT IN THE HEART OF THE SAGITTARIUS dSph GALAXY WITH OBSERVATIONS FROM THE APOGEE PROJECT. Astrophysical Journal Letters, 2013, 777, L13.	8.3	32
64	THE SEGUE K GIANT SURVEY. III. QUANTIFYING GALACTIC HALO SUBSTRUCTURE. Astrophysical Journal, 2016, 816, 80.	4.5	30
65	Abundance Ratios in GALAH DR2 and Their Implications for Nucleosynthesis. Astrophysical Journal, 2019, 886, 84.	4.5	29
66	Exploring the Stellar Age Distribution of the Milky Way Bulge Using APOGEE. Astrophysical Journal, 2020, 901, 109.	4.5	28
67	Examining the relationships between colour, <i>T</i> _{eff} , and [M/H] for APOGEE K and M dwarfs. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2611-2624.	4.4	27
68	Origin of α-rich young stars: clues from C, N, and O. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4343-4354.	4.4	27
69	Stellar Characterization of M Dwarfs from the APOGEE Survey: A Calibrator Sample for M-dwarf Metallicities. Astrophysical Journal, 2020, 890, 133.	4.5	26
70	APOGEE [C/N] Abundances across the Galaxy: Migration and Infall from Red Giant Ages. Astrophysical Journal, 2019, 871, 181.	4.5	25
71	The K2 Galactic Archaeology Program Data Release 2: Asteroseismic Results from Campaigns 4, 6, and 7. Astrophysical Journal, Supplement Series, 2020, 251, 23.	7.7	22
72	SEGUE-2: Old Milky Way Stars Near and Far. Astrophysical Journal, Supplement Series, 2022, 259, 60.	7.7	22

#	Article	IF	CITATIONS
73	The K2 Galactic Archaeology Program Data Release 3: Age-abundance Patterns in C1–C8 and C10–C18. Astrophysical Journal, 2022, 926, 191.	4.5	19
74	NEW RED JEWELS IN COMA BERENICES. Astrophysical Journal, 2014, 782, 61.	4.5	17
75	Insights from the APOKASC determination of the evolutionary state of red-giant stars by consolidation of different methods. Monthly Notices of the Royal Astronomical Society, 2019, 489, 4641-4657.	4.4	17
76	Chemical Cartography with APOGEE: Mapping Disk Populations with a 2-process Model and Residual Abundances. Astrophysical Journal, Supplement Series, 2022, 260, 32.	7.7	15
77	Response to Comment on "A noninteracting low-mass black hole–giant star binary system― Science, 2020, 368, .	12.6	13
78	The Impact of Black Hole Formation on Population-averaged Supernova Yields. Astrophysical Journal, 2021, 921, 73.	4.5	12
79	An Intermediate-age Alpha-rich Galactic Population in K2. Astronomical Journal, 2021, 161, 100.	4.7	8
80	Residual Abundances in GALAH DR3: Implications for Nucleosynthesis and Identification of Unique Stellar Populations. Astrophysical Journal, 2022, 931, 23.	4.5	8
81	Carbon-Enhanced, Metal-Poor Stars and Modeling of the Asymptotic Giant Branch. Publications of the Astronomical Society of Australia, 2009, 26, 303-310.	3.4	6
82	Nucleosynthesis signatures of neutrino-driven winds from proto-neutron stars: a perspective from chemical evolution models. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3499-3507.	4.4	6
83	Searching For Transiting Planets Around Halo Stars. I. Sample Selection and Validation. Astronomical Journal, 2021, 162, 125.	4.7	6
84	Zeta-Payne: A Fully Automated Spectrum Analysis Algorithm for the Milky Way Mapper Program of the SDSS-V Survey. Astronomical Journal, 2022, 163, 236.	4.7	6
85	The origin of the elements: a century of progress. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2020, 378, 20190301.	3.4	5
86	GLOBULAR AND OPEN CLUSTERS OBSERVED BY SDSS/SEGUE: THE GIANT STARS. Astronomical Journal, 2016, 151, 7.	4.7	4
87	Analytic Estimates of the Achievable Precision on the Physical Properties of Transiting Planets Using Purely Empirical Measurements. Astrophysical Journal, 2021, 911, 84.	4.5	3
88	Abundance Ratios in Carbonâ€Enhanced Metalâ€Poor Stars and the Intermediateâ€Mass Star Initial Mass Function. , 2008, , .		0
89	Metallicity Mapping with <i>gri</i> Photometry: The Virgo Overdensity and the Halos of the Galaxy. Proceedings of the International Astronomical Union, 2009, 5, 127-130.	0.0	0