
Michael S Krangel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10806548/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of a putative second T-cell receptor. Nature, 1986, 322, 145-149.	13.7	950
2	Two forms of the T-cell receptor Î ³ protein found on peripheral blood cytotoxic T lymphocytes. Nature, 1987, 325, 689-694.	13.7	391
3	Assembly and maturation of HLA-A and HLA-B antigens in vivo. Cell, 1979, 18, 979-991.	13.5	286
4	A Role for Histone Acetylation in the Developmental Regulation of V(D)J Recombination. Science, 2000, 287, 495-498.	6.0	265
5	Regulation of the TCRα repertoire by the survival window of CD4+CD8+ thymocytes. Nature Immunology, 2002, 3, 469-476.	7.0	219
6	A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature, 2011, 476, 467-471.	13.7	217
7	The γÎT Cell Receptor. Advances in Immunology, 1988, , 133-192.	1.1	198
8	Mechanics of T cell receptor gene rearrangement. Current Opinion in Immunology, 2009, 21, 133-139.	2.4	197
9	Gene segment selection in V(D)J recombination: accessibility and beyond. Nature Immunology, 2003, 4, 624-630.	7.0	160
10	Chemokines Have Diverse Abilities to Form Solid Phase Gradients. Clinical Immunology, 2001, 99, 43-52.	1.4	129
11	Regulation of T cell receptor-α gene recombination by transcription. Nature Immunology, 2006, 7, 1109-1115.	7.0	128
12	Noncoding transcription controls downstream promoters to regulate T-cell receptor α recombination. EMBO Journal, 2007, 26, 4380-4390.	3.5	114
13	ldentification of a Glycosaminoglycan-binding Site in Chemokine Macrophage Inflammatory Protein-1α. Journal of Biological Chemistry, 1997, 272, 10103-10109.	1.6	104
14	Targeted inhibition of V(D)J recombination by a histone methyltransferase. Nature Immunology, 2004, 5, 309-316.	7.0	101
15	IL-7 coordinates proliferation, differentiation and Tcra recombination during thymocyte β-selection. Nature Immunology, 2015, 16, 397-405.	7.0	93
16	Regulation of V(D)J recombination: A dominant role for promoter positioning in gene segment accessibility. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12309-12314.	3.3	84
17	Enforcing order within a complex locus: current perspectives on the control of V(D)J recombination at the murine T-cell receptor alpha/delta locus. Immunological Reviews, 2004, 200, 224-232.	2.8	83
18	<i>Tcra</i> gene recombination is supported by a <i>Tcra</i> enhancer- and CTCF-dependent chromatin hub. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3493-502.	3.3	79

#	Article	IF	CITATIONS
19	A Developmental Switch from TCRδEnhancer to TCRα Enhancer Function during Thymocyte Maturation. Immunity, 1999, 10, 723-733.	6.6	76
20	Regulation of T cell receptor α gene assembly by a complex hierarchy of germline Jα promoters. Nature Immunology, 2005, 6, 481-489.	7.0	76
21	A Change in the Structure of Vβ Chromatin Associated with TCR β Allelic Exclusion. Journal of Immunology, 2002, 168, 2316-2324.	0.4	75
22	Two forms of HLA class I molecules in human plasma. Human Immunology, 1987, 20, 155-165.	1.2	74
23	Comparative structural analysis of HLA-A2 antigens distinguishable by cytotoxic T lymphocytes: variants M7 and DR1. Biochemistry, 1982, 21, 6313-6321.	1.2	71
24	Initiation of allelic exclusion by stochastic interaction of Tcrb alleles with repressive nuclear compartments. Nature Immunology, 2008, 9, 802-809.	7.0	68
25	Promoters, enhancers, and transcription target RAG1 binding during V(D)J recombination. Journal of Experimental Medicine, 2010, 207, 2809-2816.	4.2	65
26	T cell development: better living through chromatin. Nature Immunology, 2007, 8, 687-694.	7.0	63
27	Chemokine Production by G Protein-Coupled Receptor Activation in a Human Mast Cell Line: Roles of Extracellular Signal-Regulated Kinase and NFAT. Journal of Immunology, 2000, 165, 7215-7223.	0.4	61
28	Cooperation among Multiple Transcription Factors Is Required for Access to Minimal T-Cell Receptor α-Enhancer Chromatin In Vivo. Molecular and Cellular Biology, 1998, 18, 3223-3233.	1.1	59
29	Regulation of T cell receptor \hat{l}^2 allelic exclusion at a level beyond accessibility. Nature Immunology, 2005, 6, 189-197.	7.0	57
30	Regulation of TCR δ and α repertoires by local and long-distance control of variable gene segment chromatin structure. Journal of Experimental Medicine, 2005, 202, 467-472.	4.2	57
31	Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires. Advances in Immunology, 2015, 128, 307-361.	1.1	57
32	A discrete chromatin loop in the mouse Tcra-Tcrd locus shapes the TCRδ and TCRα repertoires. Nature Immunology, 2015, 16, 1085-1093.	7.0	56
33	Lineage-specific compaction of <i>Tcrb</i> requires a chromatin barrier to protect the function of a long-range tethering element. Journal of Experimental Medicine, 2015, 212, 107-120.	4.2	54
34	Developmental regulation of V(D)J recombination at the TCR a/5 locus. Immunological Reviews, 1998, 165, 131-147.	2.8	53
35	T-cell receptors of human suppressor cells. Nature, 1987, 329, 541-545.	13.7	51
36	Developmental Regulation of  VDJ Recombination By the Core Fragment of the T Cell Receptor α Enhancer. Journal of Experimental Medicine, 1997, 185, 131-140.	4.2	49

#	Article	IF	CITATIONS
37	An anti-silencer– and SATB1-dependent chromatin hub regulates <i>Rag1</i> and <i>Rag2</i> gene expression during thymocyte development. Journal of Experimental Medicine, 2015, 212, 809-824.	4.2	48
38	CD69 Gene Is Differentially Regulated in T and B Cells by Evolutionarily Conserved Promoter-Distal Elements. Journal of Immunology, 2009, 183, 6513-6521.	0.4	47
39	Distinct contracted conformations of the <i>Tcra/Tcrd</i> locus during <i>Tcra</i> and <i>Tcrd</i> recombination. Journal of Experimental Medicine, 2010, 207, 1835-1841.	4.2	47
40	Structural Analysis of the Functional Sites of Class I HLA Antigens. Immunological Reviews, 1985, 85, 149-169.	2.8	44
41	Turning T-cell receptor ? recombination on and off: more questions than answers. Immunological Reviews, 2006, 209, 129-141.	2.8	44
42	Variable Extent of Lineage-Specificity and Developmental Stage-Specificity of Cohesin and CCCTC-Binding Factor Binding Within the Immunoglobulin and T Cell Receptor Loci. Frontiers in Immunology, 2018, 9, 425.	2.2	43
43	Regulation of I-309 gene expression in human monocytes by endogenous interleukin-1. European Journal of Immunology, 1997, 27, 687-694.	1.6	39
44	Orientation-specific RAG activity in chromosomal loop domains contributes to <i>Tcrd</i> V(D)J recombination during T cell development. Journal of Experimental Medicine, 2016, 213, 1921-1936.	4.2	38
45	Regulation of  T Cell Receptor δ Gene Rearrangement by CBF/PEBP2. Journal of Experimental Medicine, 1997, 185, 1193-1202.	4.2	37
46	Role for rearranged variable gene segments in directing secondary T cell receptor $\hat{I}\pm$ recombination. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 903-907.	3.3	37
47	A Lamina-Associated Domain Border Governs Nuclear Lamina Interactions, Transcription, and Recombination of the Tcrb Locus. Cell Reports, 2018, 25, 1729-1740.e6.	2.9	37
48	Germline Transcription: A Key Regulator of Accessibility and Recombination. Advances in Experimental Medicine and Biology, 2009, 650, 93-102.	0.8	37
49	Tcrd Rearrangement Redirects a Processive Tcra Recombination Program to Expand the Tcra Repertoire. Cell Reports, 2017, 19, 2157-2173.	2.9	36
50	The DNA Damage- and Transcription-Associated Protein Paxip1 Controls Thymocyte Development and Emigration. Immunity, 2012, 37, 971-985.	6.6	35
51	Chromatin Architecture, CCCTC-Binding Factor, and V(D)J Recombination: Managing Long-Distance Relationships at Antigen Receptor Loci. Journal of Immunology, 2013, 190, 4915-4921.	0.4	34
52	Inactivation of nuclear GSK3β by Ser389 phosphorylation promotes lymphocyte fitness during DNA double-strand break response. Nature Communications, 2016, 7, 10553.	5.8	32
53	Transcription-Dependent Mobilization of Nucleosomes at Accessible TCR Gene Segments In Vivo. Journal of Immunology, 2010, 184, 6970-6977.	0.4	31
54	Cohesin, CTCF and lymphocyte antigen receptor locus rearrangement. Trends in Immunology, 2012, 33, 153-159.	2.9	31

#	Article	IF	CITATIONS
55	Multiple Constraints at the Level of TCRα Rearrangement Impact Vα14i NKT Cell Development. Journal of Immunology, 2007, 179, 2228-2234.	0.4	28
56	Peripheral subnuclear positioning suppresses <i>Tcrb</i> recombination and segregates <i>Tcrb</i> alleles from RAG2. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4628-37.	3.3	27
57	Regulation of the Murine Dδ2 Promoter by Upstream Stimulatory Factor 1, Runx1, and c-Myb. Journal of Immunology, 2005, 174, 4144-4152.	0.4	26
58	A Barrier-Type Insulator Forms a Boundary between Active and Inactive Chromatin at the Murine TCRβ Locus. Journal of Immunology, 2011, 186, 3556-3562.	0.4	26
59	V(D)j Recombination Becomes Accessible. Journal of Experimental Medicine, 2001, 193, F27-F30.	4.2	24
60	Distinct Roles for c-Myb and Core Binding Factor/Polyoma Enhancer-Binding Protein 2 in the Assembly and Function of a Multiprotein Complex on the TCR δEnhancer In Vivo. Journal of Immunology, 2002, 169, 4362-4369.	0.4	23
61	Developmental Activation of the TCR α Enhancer Requires Functional Collaboration among Proteins Bound Inside and Outside the Core Enhancer. Journal of Immunology, 2004, 173, 5054-5063.	0.4	23
62	Allele-Specific Regulation of TCRβ Variable Gene Segment Chromatin Structure. Journal of Immunology, 2005, 175, 5186-5191.	0.4	23
63	Orchestrating T-cell receptor α gene assembly through changes in chromatin structure and organization. Immunologic Research, 2011, 49, 192-201.	1.3	23
64	Yin Yang 1 Promotes Thymocyte Survival by Downregulating p53. Journal of Immunology, 2016, 196, 2572-2582.	0.4	21
65	Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4+CD8+ thymocytes. Journal of Experimental Medicine, 2019, 216, 231-243.	4.2	21
66	The order and logic of CD4 versus CD8 lineage choice and differentiation in mouse thymus. Nature Communications, 2021, 12, 99.	5.8	21
67	Long-Distance Regulation of Fetal Vδ Gene Segment TRDV4 by the Tcrd Enhancer. Journal of Immunology, 2011, 187, 2484-2491.	0.4	20
68	KAP-1 Promotes Resection of Broken DNA Ends Not Protected by γ-H2AX and 53BP1 in G ₁ -Phase Lymphocytes. Molecular and Cellular Biology, 2014, 34, 2811-2821.	1.1	20
69	An Ectopic CTCF Binding Element Inhibits <i>Tcrd</i> Rearrangement by Limiting Contact between Vδ and Dδ Gene Segments. Journal of Immunology, 2016, 197, 3188-3197.	0.4	20
70	Accessibility Control of T Cell Receptor Gene Rearrangement in Developing Thymocytes: The TCR α/δ Locus. Immunologic Research, 2000, 22, 127-136.	1.3	16
71	T-cell receptor \hat{I}_{\pm} enhancer is inactivated in $\hat{I}_{\pm}^{\hat{I}^2}$ T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1744-53.	3.3	15
72	Specification of Vδ and Vα Usage by Tcra/Tcrd Locus V Gene Segment Promoters. Journal of Immunology, 2015, 194, 790-794.	0.4	14

#	Article	IF	CITATIONS
73	A role of the CTCF binding site at enhancer Eα in the dynamic chromatin organization of the Tcra–Tcrd locus. Nucleic Acids Research, 2020, 48, 9621-9636.	6.5	13
74	Assessing a role for enhancer-blocking activity in gene regulation within the murine T-cell receptor alpha/delta locus. Immunology, 2001, 104, 11-18.	2.0	12
75	Regulation of TCRÎ ² Allelic Exclusion by Gene Segment Proximity and Accessibility. Journal of Immunology, 2011, 187, 6374-6381.	0.4	11
76	A Role for MAPK in Feedback Inhibition of <i>Tcrb</i> Recombination. Journal of Immunology, 2006, 176, 6824-6830.	0.4	9
77	Trav15-dv6 family <i>Tcrd</i> rearrangements diversify the <i>Tcra</i> repertoire. Journal of Experimental Medicine, 2022, 219, .	4.2	7
78	Diversification of the TCR \hat{I}^2 Locus V \hat{I}^2 Repertoire by CTCF. ImmunoHorizons, 2018, 2, 377-383.	0.8	5
79	Molecular Analysis of Mouse T Cell Receptor α and β Gene Rearrangements. Methods in Molecular Biology, 2016, 1323, 179-202.	0.4	3
80	Beyond Hypothesis: Direct Evidence That V(D)J Recombination Is Regulated by the Accessibility of Chromatin Substrates. Journal of Immunology, 2015, 195, 5103-5105.	0.4	2
81	Allelic Exclusion, Isotypic Exclusion, and the Developmental Regulation of V(D)J Recombination. , 2004, , 127-140.		2
82	The Ties that Bind (the Igh Locus). Trends in Genetics, 2016, 32, 253-255.	2.9	1
83	Some Nuts Are Tougher to Crack than Others. Immunity, 2006, 24, 361-363.	6.6	0
84	RSSs set the odds for exclusion. Journal of Experimental Medicine, 2020, 217, .	4.2	0