
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10804784/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Valorization of Poly (ethylene) terephthalate (PET) wastes into magnetic carbon for adsorption of antibiotic from water: Characterization and application. Journal of Environmental Management, 2018, 207, 249-261.	3.8	55
2	Optimization of phosphate removal from aqueous solution using activated carbon supported zero-valent iron nanoparticles: application of RSM approach. Applied Water Science, 2018, 8, 1.	2.8	22
3	Inter-moieties reactivity correlations: an approach to estimate the reactivity endpoints of major atmospheric reactants towards organic chemicals. RSC Advances, 2016, 6, 50297-50305.	1.7	8
4	In silico prediction of the developmental toxicity of diverse organic chemicals in rodents for regulatory purposes. Toxicology Research, 2016, 5, 773-787.	0.9	13
5	Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches. Environmental Science and Pollution Research, 2016, 23, 14034-14046.	2.7	24
6	QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes. Toxicology Research, 2016, 5, 1029-1038.	0.9	21
7	A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes. Regulatory Toxicology and Pharmacology, 2016, 77, 282-291.	1.3	15
8	Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches. Computational Biology and Chemistry, 2016, 61, 178-196.	1.1	34
9	Modeling the toxicity of chemical pesticides in multiple test species using local and global QSTR approaches. Toxicology Research, 2016, 5, 340-353.	0.9	33
10	Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches. Environmental Science and Pollution Research, 2015, 22, 17810-17827.	2.7	2
11	Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Chemosphere, 2015, 139, 246-255.	4.2	36
12	Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes. Journal of Chemical Information and Modeling, 2015, 55, 1337-1348.	2.5	42
13	Predicting aquatic toxicities of benzene derivatives in multiple test species using local, global and interspecies QSTR modeling approaches. RSC Advances, 2015, 5, 71153-71163.	1.7	11
14	QSTR modeling for predicting aquatic toxicity of pharmacological active compounds in multiple test species for regulatory purpose. Chemosphere, 2015, 120, 680-689.	4.2	20
15	Evaluating influences of seasonal variations and anthropogenic activities on alluvial groundwater hydrochemistry using ensemble learning approaches. Journal of Hydrology, 2014, 511, 254-266.	2.3	76
16	Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data. Environmental Monitoring and Assessment, 2014, 186, 2749-2765.	1.3	9
17	Groundwater quality appraisal and its hydrochemical characterization in Chaziabad (a region of) Tj ETQq1 1 0.7	′84314 rgB 2.8	T /Qyerlock
	Investigating hydrochemistry of groundwater in Indo-Cangetic alluvial plain using multivariate		

¹⁸ Investigating hydrochemistry of groundwater in Indo-Gangetic alluvial plain using multivariate chemometric approaches. Environmental Science and Pollution Research, 2014, 21, 6001-6015.

2.7 15

#	Article	IF	CITATIONS
19	Occurrence of pharmaceuticals in urban wastewater of north Indian cities and risk assessment. Environmental Monitoring and Assessment, 2014, 186, 6663-6682.	1.3	85
20	In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches. Toxicology and Applied Pharmacology, 2014, 275, 198-212.	1.3	24
21	Predicting adsorptive removal of chlorophenol from aqueous solution using artificial intelligence based modeling approaches. Environmental Science and Pollution Research, 2013, 20, 2271-2287.	2.7	31
22	Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches. Ecotoxicology and Environmental Safety, 2013, 95, 221-233.	2.9	71
23	Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches. Toxicology and Applied Pharmacology, 2013, 272, 465-475.	1.3	48
24	Optimization of nitrate reduction by EDTA catalyzed zero-valent bimetallic nanoparticles in aqueous medium. Environmental Science and Pollution Research, 2012, 19, 3914-3924.	2.7	24
25	Optimizing removal of ibuprofen from water by magnetic nanocomposite using Box–Behnken design. Environmental Science and Pollution Research, 2012, 19, 724-738.	2.7	37
26	Modeling and optimization of reductive degradation of chloramphenicol in aqueous solution by zero-valent bimetallic nanoparticles. Environmental Science and Pollution Research, 2012, 19, 2063-2078.	2.7	42
27	Artificial intelligence based modeling for predicting the disinfection by-products in water. Chemometrics and Intelligent Laboratory Systems, 2012, 114, 122-131.	1.8	65
28	Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 2012, 426, 244-255.	3.9	131
29	Modeling and optimization of trihalomethanes formation potential of surface water (a drinking) Tj ETQq1 1 0.784 113-127.	4314 rgBT 2.7	Överlock 1 33
30	Support vector machines in water quality management. Analytica Chimica Acta, 2011, 703, 152-162.	2.6	225
31	Distribution of polycyclic aromatic hydrocarbons in water and bed sediments of the Gomti River, India. Environmental Monitoring and Assessment, 2011, 172, 529-545.	1.3	163
32	Optimization of Cr(VI) reduction by zero-valent bimetallic nanoparticles using the response surface modeling approach. Desalination, 2011, 270, 275-284.	4.0	68
33	Optimizing adsorption of crystal violet dye from water by magnetic nanocomposite using response surface modeling approach. Journal of Hazardous Materials, 2011, 186, 1462-1473.	6.5	357
34	Modeling the performance of "up-flow anaerobic sludge blanket―reactor based wastewater treatment plant using linear and nonlinear approaches—A case study. Analytica Chimica Acta, 2010, 658, 1-11.	2.6	61
35	Experimental design and response surface modeling for optimization of Rhodamine B removal from water by magnetic nanocomposite. Chemical Engineering Journal, 2010, 165, 151-160.	6.6	98
36	Linear and nonlinear modeling for simultaneous prediction of dissolved oxygen and biochemical oxygen demand of the surface water — A case study. Chemometrics and Intelligent Laboratory Systems, 2010, 104, 172-180.	1.8	88

KUNWAR P SINGH

#	Article	IF	CITATIONS
37	Artificial neural network modeling of the river water quality—A case study. Ecological Modelling, 2009, 220, 888-895.	1.2	516
38	Multivariate modeling of chromium-induced oxidative stress and biochemical changes in plants of Pistia stratiotes L Ecotoxicology, 2009, 18, 555-566.	1.1	28
39	Levels and distribution of persistent organochlorine pesticide residues in water and sediments of Gomti River (India)—a tributary of the Ganges River. Environmental Monitoring and Assessment, 2009, 148, 421-435.	1.3	126
40	Partial least squares and artificial neural networks modeling for predicting chlorophenol removal from aqueous solution. Chemometrics and Intelligent Laboratory Systems, 2009, 99, 150-160.	1.8	54
41	Iron-induced oxidative stress in a macrophyte: A chemometric approach. Ecotoxicology and Environmental Safety, 2009, 72, 585-595.	2.9	32
42	Vertical characterization of soil contamination using multi-way modeling – A case study. Environmental Monitoring and Assessment, 2008, 146, 19-32.	1.3	10
43	Distribution of Polycyclic Aromatic Hydrocarbons in Edible Fish from Gomti River, India. Bulletin of Environmental Contamination and Toxicology, 2008, 80, 134-138.	1.3	32
44	Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. Journal of Hazardous Materials, 2008, 150, 626-641.	6.5	172
45	Wastewater treatment using low cost activated carbons derived from agricultural byproducts—A case study. Journal of Hazardous Materials, 2008, 152, 1045-1053.	6.5	222
46	Chemometrics assisted spectrophotometric determination of pyridine in water and wastewater. Analytica Chimica Acta, 2008, 630, 10-18.	2.6	10
47	Multi-way data modeling of heavy metal fractionation in sediments from Gomti River (India). Chemometrics and Intelligent Laboratory Systems, 2007, 87, 185-193.	1.8	20
48	Multi-way partial least squares modeling of water quality data. Analytica Chimica Acta, 2007, 584, 385-396.	2.6	37
49	Exploring groundwater hydrochemistry of alluvial aquifers using multi-way modeling. Analytica Chimica Acta, 2007, 596, 171-182.	2.6	15
50	Multi-Block Data Modeling for Characterization of Soil Contamination: A Case Study. Water, Air, and Soil Pollution, 2007, 185, 79-93.	1.1	8
51	Persistent Organochlorine Pesticide Residues in Soil and Surface Water of Northern Indo-Gangetic Alluvial Plains. Environmental Monitoring and Assessment, 2007, 125, 147-155.	1.3	107
52	Hydrochemistry of Wet Atmospheric Precipitation Over an Urban Area in Northern Indo-Gangetic Plains. Environmental Monitoring and Assessment, 2007, 131, 237-254.	1.3	42
53	Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere. Environmental Monitoring and Assessment, 2007, 136, 183-196.	1.3	71
	Reply to "Comment on the Removal Mechanism of Hexavalent Chromium by Biomaterials or		

54

4

Biomaterial-Based Activated Carbonsâ \in (Comment on $\hat{a} \in \mathbb{R}$ Removal of Hexavalent Chromium from Aqueous) Tj ETQq0 0 0 rgBT /Overloc

#	Article	IF	CITATIONS
55	Multi-way modeling of hydro-chemical data of an alluvial river system—A case study. Analytica Chimica Acta, 2006, 571, 248-259.	2.6	26
56	Multi-way data analysis of soils irrigated with wastewater–A case study. Chemometrics and Intelligent Laboratory Systems, 2006, 83, 1-12.	1.8	34
57	Trivalent chromium removal from wastewater using low cost activated carbon derived from agricultural waste material and activated carbon fabric cloth. Journal of Hazardous Materials, 2006, 135, 280-295.	6.5	370
58	Distribution of nitrogen species in groundwater aquifers of an industrial area in alluvial Indo-Gangetic Plains—a case study. Environmental Geochemistry and Health, 2006, 28, 473-485.	1.8	33
59	Evaluation of Groundwater Quality in Northern Indo-Gangetic Alluvium Region. Environmental Monitoring and Assessment, 2006, 112, 211-230.	1.3	80
60	chemometric analysis of hydro-chemical data of an alluvial river – a case study. Water, Air, and Soil Pollution, 2006, 170, 383-404.	1.1	26
61	Removal of pyridine derivatives from aqueous solution by activated carbons developed from agricultural waste materials. Carbon, 2005, 43, 1680-1693.	5.4	70
62	Chemometric data analysis of pollutants in wastewater—a case study. Analytica Chimica Acta, 2005, 532, 15-25.	2.6	86
63	Water quality assessment and apportionment of pollution sources of Gomti river (India) using multivariate statistical techniques—a case study. Analytica Chimica Acta, 2005, 538, 355-374.	2.6	717
64	Chemometric analysis of groundwater quality data of alluvial aquifer of Gangetic plain, North India. Analytica Chimica Acta, 2005, 550, 82-91.	2.6	141
65	Estimation of Source of Heavy Metal Contamination in Sediments of Gomti River (India) using Principal Component Analysis. Water, Air, and Soil Pollution, 2005, 166, 321-341.	1.1	174
66	Status of Heavy Metals in Water and Bed Sediments of River Gomti – A Tributary of the Ganga River, India. Environmental Monitoring and Assessment, 2005, 105, 43-67.	1.3	117
67	Removal of α-Picoline, β-Picoline, and γ-Picoline from Synthetic Wastewater Using Low Cost Activated Carbons Derived from Coconut Shell Fibers. Environmental Science & Technology, 2005, 39, 5076-5086.	4.6	33
68	Studies on distribution and fractionation of heavy metals in Gomti river sediments—a tributary of the Ganges, India. Journal of Hydrology, 2005, 312, 14-27.	2.3	541
69	Removal of Hexavalent Chromium from Aqueous Solution Using Low-Cost Activated Carbons Derived from Agricultural Waste Materials and Activated Carbon Fabric Cloth. Industrial & Engineering Chemistry Research, 2005, 44, 1027-1042.	1.8	332
70	Removal of pyridine from aqueous solution using low cost activated carbons derived from agricultural waste materials. Carbon, 2004, 42, 2409-2421.	5.4	118
71	Impact assessment of treated/untreated wastewater toxicants discharged by sewage treatment plants on health, agricultural, and environmental quality in the wastewater disposal area. Chemosphere, 2004, 55, 227-255.	4.2	379
72	Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)—a case study. Water Research, 2004, 38, 3980-3992.	5.3	1,239

#	Article	IF	CITATIONS
73	Removal of Fluoride from Aqueous Solutions byEichhornia crassipesBiomass and Its Carbonized Form. Industrial & Engineering Chemistry Research, 2003, 42, 6911-6918.	1.8	83
74	Color Removal from Wastewater Using Low-Cost Activated Carbon Derived from Agricultural Waste Material. Industrial & Engineering Chemistry Research, 2003, 42, 1965-1976.	1.8	296
75	Vapor-Phase Adsorption of Hexane and Benzene on Activated Carbon Fabric Cloth:  Equilibria and Rate Studies. Industrial & Engineering Chemistry Research, 2002, 41, 2480-2486.	1.8	57
76	Removal of Dyes from Wastewater Using Flyash, a Low-Cost Adsorbentâ€. Industrial & Engineering Chemistry Research, 2002, 41, 3688-3695.	1.8	321
77	Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Research, 2002, 36, 2304-2318.	5.3	971
78	Studies on defluoridation of water by coal-based sorbents. Journal of Chemical Technology and Biotechnology, 2001, 76, 717-722.	1.6	63