Luis Ap Simoes Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/108042/publications.pdf

Version: 2024-02-01

191 papers 4,562 citations

36 h-index 57 g-index

209 all docs

209 docs citations

209 times ranked 2157 citing authors

#	Article	IF	CITATIONS
1	A novel residual stress model for welded I-sections. Journal of Constructional Steel Research, 2022, 188, 107017.	3.9	25
2	Seismic Performance of Steel MRFs Designed to the Provisions of the Latest Draft Eurocode 8: Case Studies. Lecture Notes in Civil Engineering, 2022, , 1056-1063.	0.4	1
3	Buckling curve selection for HSS welded I-section members. Thin-Walled Structures, 2022, 177, 109430.	5.3	9
4	Experimental and numerical flexural buckling resistance of high strength steel columns and beam-columns. Engineering Structures, 2022, 265, 114414.	5.3	9
5	Behaviour of plug-and-play joints between RHS columns and CFS trusses. Structures, 2022, 41, 1719-1745.	3.6	5
6	Eurocode 8 revision – Implications on the design and performance of steel moment-resisting frames: Case study. Soil Dynamics and Earthquake Engineering, 2022, 161, 107411.	3.8	4
7	New design rules for plate girders curved in plan. Proceedings of the Institution of Civil Engineers: Bridge Engineering, 2021, 174, 97-112.	0.6	3
8	Performance of modular hybrid cold-formed/tubular structural system. Structures, 2021, 30, 1006-1019.	3.6	17
9	Component-based method for quasi-static cyclic behaviour of steel joints. Journal of Constructional Steel Research, 2021, 181, 106551.	3.9	7
10	Resistance of curved steel cross-sections for bridge deck applications: Design proposals. Journal of Constructional Steel Research, 2021, 182, 106679.	3.9	1
11	Lateral-torsional buckling of high strength steel beams: Experimental resistance. Thin-Walled Structures, 2021, 164, 107913.	5.3	19
12	Stability Design of High Strength Steel Beams. Ce/Papers, 2021, 4, 1624-1629.	0.3	0
13	Industry 4.0 for Steel Construction: an Outlook. Ce/Papers, 2021, 4, 1730-1735.	0.3	O
14	Cyclic behaviour of steel beamâ€toâ€column joints and calculation tools. Ce/Papers, 2021, 4, 1974-1981.	0.3	0
15	Innovative 3D joint for steel modular construction. Ce/Papers, 2021, 4, 958-963.	0.3	3
16	Fatigue life of preloaded injection bolts in a bridge strengthening scenario – sensitivity analysis of fatigue life estimators. Ce/Papers, 2021, 4, 125-130.	0.3	0
17	Experimental assessment of bolted Tâ€stubs under cyclic loading. Ce/Papers, 2021, 4, 1982-1991.	0.3	1
18	Shear Strengthening of Slender Steel Beams Using Coldâ€formed Stiffeners and Adhesives. Ce/Papers, 2021, 4, 2225-2231.	0.3	1

#	Article	IF	Citations
19	Fatigue of Preloaded Bolted Connections with Injection Bolts. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2020, 30, 102-108.	0.8	5
20	Enhancement of the life-cycle performance of bridges using high-strength steel. Structure and Infrastructure Engineering, 2020, 16, 772-786.	3.7	5
21	Safety Assessment of Eurocode 3 Stability Design Rules for Prismatic Members in Bending and Compression. International Journal of Steel Structures, 2020, 20, 343-354.	1.3	4
22	Experimental and numerical investigation on cylindrically curved steel panels under uniform compression. Thin-Walled Structures, 2020, 149, 106527.	5.3	11
23	Structural member stability verification in the new Part $1\hat{a}\in \mathbb{I}$ of the second generation of Eurocode 3. Steel Construction, 2020, 13, 208-222.	0.8	13
24	CMM 2019, Coimbra. Steel Construction, 2020, 13, 83-83.	0.8	0
25	Response of friction joints under different velocity rates. Journal of Constructional Steel Research, 2020, 168, 106004.	3.9	19
26	Steel boxâ€girder bridge decks with curved bottom flange. Steel Construction, 2020, 13, 238-244.	0.8	2
27	Robotics and Additive Manufacturing in the Construction Industry. Current Robotics Reports, 2020, 1, 13-18.	7.9	15
28	Structural member stability verification in the new Part $1\hat{a}\in \mathbb{I}$ of the second generation of Eurocode 3. Steel Construction, 2020, 13, 98-113.	0.8	19
29	Residual stresses in welded I section steel members. Engineering Structures, 2019, 197, 109398.	5. 3	34
30	Three-dimensional macro-modeling of beam-to-rectangular hollow section column joints under cyclic loading. Part 2: Modeling of beam-to-column joint by extended component-based approach. Journal of Constructional Steel Research, 2019, 162, 105714.	3.9	2
31	Three-dimensional macro-modeling of beam-to-rectangular hollow section column joints under cyclic loading. Part 1: Modeling of cyclic out-of-plane behavior of single isolated plate element. Journal of Constructional Steel Research, 2019, 162, 105713.	3.9	4
32	Ultimate load of cylindrically curved steel panels under pure shear. Thin-Walled Structures, 2019, 142, 171-188.	5. 3	8
33	Modal Identification and Strengthening Techniques on Centenary Portela Bridge. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2019, 29, 586-594.	0.8	2
34	Experimental behavior of curved bottom flanges in steel box-girder bridge decks. Journal of Constructional Steel Research, 2019, 160, 169-188.	3.9	14
35	Reliability assessment of EC3-1-5 methodology of welded slender cross-sections under direct stresses. Journal of Constructional Steel Research, 2019, 160, 301-319.	3.9	3
36	Eigenvalue analysis of cylindrically curved steel panels under pure shear. Thin-Walled Structures, 2019, 141, 447-459.	5. 3	6

#	Article	IF	Citations
37	Ultimate resistance of isotropic cylindrically curved steel panels under uniaxial compression. Journal of Constructional Steel Research, 2019, 159, 95-108.	3.9	3
38	Experimental behaviour of 3D end-plate beam-to-column bolted steel joints. Engineering Structures, 2019, 188, 277-289.	5.3	23
39	PROMOTION OF ENERGY SUSTAINABILITY IN EXISTING NEIGHBORHOODS ―A NEW APPROACH OF THE ENERGY INDICATOR. Ce/Papers, 2019, 3, 13-22.	0.3	0
40	EXPERIMENTAL AND NUMERICAL INVESTIGATION ON THE STEEL BOXâ€GIRDER BRIDGE DECKS WITH CURVED BOTTOM FLANGE. Ce/Papers, 2019, 3, 118-127.	0.3	0
41	Stability design of cableâ€stayed columns. Steel Construction, 2019, 12, 309-317.	0.8	12
42	GBT Buckling Analysis of Cylindrical Panels Under Compression. Structures, 2019, 17, 34-42.	3.6	5
43	Experimental response of a low-yielding, self-centering, rocking column base joint with friction dampers. Soil Dynamics and Earthquake Engineering, 2019, 116, 580-592.	3.8	74
44	Laboratory and in-situ non-destructive methods to evaluate the thermal transmittance and behavior of walls, windows, and construction elements with innovative materials: A review. Energy and Buildings, 2019, 182, 88-110.	6.7	80
45	Semi-analytical orthotropic model for the prediction of the post-buckling behaviour of stiffened cylindrically curved steel panels under uniaxial compression. Computers and Structures, 2019, 211, 27-42.	4.4	11
46	Ductility-Equivalent Viscous Damping Relationships for Beam-to-Column Partial-Strength Steel Joints. Journal of Earthquake Engineering, 2019, 23, 810-836.	2.5	3
47	Semi-analytical model for the prediction of the post-buckling behaviour of unstiffened cylindrically curved steel panels under uniaxial compression. Marine Structures, 2018, 59, 387-400.	3.8	11
48	Urban Integrated Sustainable Assessment Methodology for Existing Neighborhoods (UISA fEN), a New Approach for Promoting Sustainable Development. Sustainable Development, 2018, 26, 564-587.	12.5	9
49	Numerical modelling of innovative DST steel joint under cyclic loading. Archives of Civil and Mechanical Engineering, 2018, 18, 687-701.	3.8	24
50	Experimental lateral-torsional buckling behaviour of web tapered I-section steel beams. Engineering Structures, 2018, 168, 355-370.	5.3	16
51	Experimental buckling behaviour of web tapered I-section steel columns. Journal of Constructional Steel Research, 2018, 147, 293-312.	3.9	28
52	Behaviour of thin-walled curved steel plates under generalised in-plane stresses: A review. Journal of Constructional Steel Research, 2018, 140, 191-207.	3.9	27
53	Holistic approach to sustainability of bridges. Steel Construction, 2018, 11, 179-183.	0.8	2
54	Buckling resistance of non-uniform steel members based on stress utilization: General formulation. Journal of Constructional Steel Research, 2018, 149, 239-256.	3.9	22

#	Article	IF	CITATIONS
55	Axial Monotonic and Cyclic Testing of Micropiles in Loose Sand. Geotechnical Testing Journal, 2018, 41, 526-542.	1.0	8
56	Cyclic behaviour characterization of web panel components in bolted end-plate steel joints. Journal of Constructional Steel Research, 2017, 133, 310-333.	3.9	24
57	Mixed mode (I+II) fatigue crack growth in puddle iron. Engineering Fracture Mechanics, 2017, 185, 175-192.	4.3	46
58	Energy efficiency and thermal performance of lightweight steel-framed (LSF) construction: A review. Renewable and Sustainable Energy Reviews, 2017, 78, 194-209.	16.4	92
59	03.26: Experimental assessment of friction dampers under impact loading. Ce/Papers, 2017, 1, 711-720.	0.3	1
60	13.02: Safety assessment across modes driven by plasticity, stability and fracture. Ce/Papers, 2017, 1, 3689-3698.	0.3	5
61	General component based cruciform finite elements to model 2D steel joints with beams of equal and different depths. Engineering Structures, 2017, 152, 698-708.	5.3	13
62	Structural performance of light steel framing panels using screw connections subjected to lateral loading. Thin-Walled Structures, 2017, 121, 67-88.	5.3	35
63	05.10: Numerical model for the buckling behaviour of tapered steel members based on experimental tests. Ce/Papers, 2017, 1, 1106-1115.	0.3	1
64	11.30: Experimental behaviour of base plate joints equipped with selfâ€centering system and friction dampers. Ce/Papers, 2017, 1, 3082-3091.	0.3	1
65	11.12: Derivation of the cyclic behaviour of components in bolted end-plate beam-to-column joints using FEM. Ce/Papers, 2017, 1, 2926-2935.	0.3	O
66	04.09: Cylindrically curved steel panels in bridge design: Buckling and post-buckling behaviour under shear stresses. Ce/Papers, 2017, 1, 888-897.	0.3	0
67	Fatigue Strength Evaluation of Resin-Injected Bolted Connections Using Statistical Analysis. Engineering, 2017, 3, 795-805.	6.7	16
68	A consistent methodology for the out-of-plane buckling resistance of prismatic steel beam-columns. Journal of Constructional Steel Research, 2017, 128, 839-852.	3.9	21
69	EXPERIMENTAL ANALYSIS OF UNSTIFFENED CYLINDRICALLY CURVED PANELS. Ce/Papers, 2017, 1, 448-457.	0.3	O
70	AYRTONâ€PERRY FORMULATION FOR THE BUCKLING RESISTANCE OF PRISMATIC BEAM OLUMNS. Ce/Papers, 2017, 1, 415-425.	0.3	0
71	13.17: A comprehensive assessment of eurocode 3 pt. 1.1 & NBR 8800 steel design codes. Ce/Papers, 2017, 1, 3841-3850.	0.3	0
72	Dual-concentrically Braced Frames Using High Strength Steel – Seismic Response. Open Civil Engineering Journal, 2017, 11, 496-512.	0.8	2

#	Article	IF	Citations
73	â€The management indicator' from the point of view of an urban assessment. International Journal of Sustainable Development and Planning, 2017, 12, 457-467.	0.7	2
74	Statistical analysis of fatigue crack propagation data of materials from ancient portuguese metallic bridges. Frattura Ed Integrita Strutturale, 2017, 11, 136-146.	0.9	7
7 5	Robustness Assessment of Steel Moment Resisting Frames. Open Civil Engineering Journal, 2017, 11, 420-433.	0.8	1
76	Conceptual Model for the Sustainable Rehabilitation of Medium-Size Inner Cities in Europe: Coimbra, Portugal. Journal of the Urban Planning and Development Division, ASCE, 2016, 142, .	1.7	4
77	Resistance of cold-formed high strength steel circular and polygonal sections - Part 2: Numerical investigations. Journal of Constructional Steel Research, 2016, 125, 227-238.	3.9	5
78	Fatigue assessment of steel half-pipes bolted connections using local approaches. Procedia Structural Integrity, 2016, 1, 118-125.	0.8	4
79	Structural behaviour of prestressed stayed columns with single and double cross-arms using normal and high strength steel. Archives of Civil and Mechanical Engineering, 2016, 16, 618-633.	3.8	20
80	Mixed Mode (I+II) Fatigue Crack Growth of Long Term Operating Bridge Steel. Procedia Engineering, 2016, 160, 262-269.	1.2	16
81	On the Safety of the European Stability Design Rules for Steel Members. Structures, 2016, 8, 157-169.	3.6	5
82	Energy-based analytical model to predict the elastic critical behaviour of curved panels. Journal of Constructional Steel Research, 2016, 127, 165-175.	3.9	10
83	Composite joints under M-N at elevated temperatures. Journal of Constructional Steel Research, 2016, 124, 173-186.	3.9	13
84	Characterization of the Cyclic Behavior of the Web Components in End-plate Beam-to-column Joints. Procedia Engineering, 2016, 160, 101-108.	1.2	6
85	Global Fatigue Life Modelling of Steel Half-pipes Bolted Connections. Procedia Engineering, 2016, 160, 278-284.	1.2	3
86	Comparative assessment of the design of tubular elements according to offshore design standards and Eurocode 3. Steel Construction, 2016, 9, 266-278.	0.8	1
87	High strength steel in chevron concentrically braced frames designed according to Eurocode 8. Engineering Structures, 2016, 124, 167-185.	5. 3	56
88	Resistance of cold-formed high strength steel circular and polygonal sections â€" Part 1: Experimental investigations. Journal of Constructional Steel Research, 2016, 120, 245-257.	3.9	23
89	Characterization of web panel components in double-extended bolted end-plate steel joints. Journal of Constructional Steel Research, 2016, 116, 271-293.	3.9	33
90	Lightweight steel-framed thermal bridges mitigation strategies: A parametric study. Journal of Building Physics, 2016, 39, 342-372.	2.4	44

#	Article	IF	Citations
91	A simplified tool to evaluate the sustainability of buildings in steel in early stages of design. Materiaux Et Techniques, 2016, 104, 103.	0.9	3
92	Influence of seismic design rules on the robustness of steel moment resisting frames. Steel and Composite Structures, 2016, 21, 479-500.	1.3	50
93	SAFETY ASSESSMENT OF EUROCODE 3 STABILITY DESIGNRULES FOR THE FLEXURAL BUCKLING OF COLUMNS. , 2016, , 328-358.		3
94	AXIAL FORCE AND DEFORMATION OF A RESTRAINED STEEL BEAM IN FIRE Description and validation of a simplified analytical procedure., 2016,, 174-193.		0
95	Comparative life cycle social assessment of buildings: health and comfort criterion. Materiaux Et Techniques, 2016, 104, 601.	0.9	3
96	Numerical Study of Steel Beams in Sub-frame Assembly Validation of Existing Hand Calculation Procedures. Journal of Structural Fire Engineering, 2015, 6, 123-140.	0.8	0
97	Friction connection vs. ring flange connection in steel towers for wind converters. Engineering Structures, 2015, 98, 151-162.	5.3	19
98	Influence of Maintenance Strategies on the Life Cycle Performance of Composite Highway Bridges. Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), 2015, 25, 184-196.	0.8	4
99	Component based design model for composite beam to reinforced concrete wall moment-resistant joints. Engineering Structures, 2015, 87, 86-104.	5.3	10
100	Imperfection sensitivity of cylindrically curved steel panels. Thin-Walled Structures, 2015, 89, 101-115.	5 . 3	17
101	Initial stiffness evaluation of reverse channel connections in tension and compression. Journal of Constructional Steel Research, 2015, 114, 119-128.	3.9	5
102	A full scale experimental study of prestressed stayed columns. Engineering Structures, 2015, 100, 490-510.	5. 3	40
103	Connections in towers for wind converters, Part II: The friction connection behaviour. Journal of Constructional Steel Research, 2015, 115, 458-466.	3.9	18
104	Connections in towers for wind converters, part I: Evaluation of down-scaled experiments. Journal of Constructional Steel Research, 2015, 115, 445-457.	3.9	29
105	Analytical model for the response of T-stub joint component under impact loading. Journal of Constructional Steel Research, 2015, 106, 23-34.	3.9	30
106	SUB-FRAMES WITH REVERSE CHANNEL CONNECTIONS TO CFT COMPOSITE COLUMNS $\hat{a} \in \text{EXPERIMENTAL}$ EVALUATION. , 2015, , 111-126.		0
107	Thermal performance of lightweight steel framed wall: The importance of flanking thermal losses. Journal of Building Physics, 2014, 38, 81-98.	2.4	36
108	Comparative life cycle assessment of tubular wind towers and foundations – Part 1: Structural design. Engineering Structures, 2014, 74, 283-291.	5. 3	23

#	Article	IF	CITATIONS
109	Design formulation analysis for high strength steel welded beam-to-column joints. Engineering Structures, 2014, 70, 63-81.	5.3	12
110	Ultimate load of cylindrically curved panels under in-plane compression and bendingâ€"Extension of rules from EN 1993-1-5. Thin-Walled Structures, 2014, 77, 36-47.	5.3	23
111	Comparative life cycle assessment of tubular wind towers and foundations – Part 2: Life cycle analysis. Engineering Structures, 2014, 74, 292-299.	5.3	13
112	A macro-component approach for the assessment of building sustainability in early stages of design. Building and Environment, 2014, 73, 256-270.	6.9	82
113	Towards a standardized procedure for the safety assessment of stability design rules. Journal of Constructional Steel Research, 2014, 103, 290-302.	3.9	37
114	Message from the Chairman of the Editorial Board. Steel Construction, 2014, 7, 168-168.	0.8	0
115	Seismic performance of dual-steel moment resisting frames. Journal of Constructional Steel Research, 2014, 101, 437-454.	3.9	58
116	Experimental analysis on cold-formed steel beams subjected to fire. Thin-Walled Structures, 2014, 74, 104-117.	5.3	34
117	Extension of EC3-1-1 interaction formulae for the stability verification of tapered beam-columns. Journal of Constructional Steel Research, 2014, 100, 122-135.	3.9	19
118	Assessment of building operational energy at early stages of design – A monthly quasi-steady-state approach. Energy and Buildings, 2014, 79, 58-73.	6.7	15
119	Experimental analysis and mechanical modeling of T-stubs with four bolts per row. Journal of Constructional Steel Research, 2014, 101, 158-174.	3.9	53
120	Thermal performance of lightweight steel-framed construction systems. Metallurgical Research and Technology, 2014, 111, 329-338.	0.7	28
121	Rayleigh-Ritz procedure for determination of the critical load of tapered columns. Steel and Composite Structures, 2014, 16, 45-58.	1.3	9
122	Development of a consistent design procedure for lateral–torsional buckling of tapered beams. Journal of Constructional Steel Research, 2013, 89, 213-235.	3.9	25
123	Experimental and numerical analysis on the structural behaviour of cold-formed steel beams. Thin-Walled Structures, 2013, 72, 1-13.	5.3	93
124	Behaviour of welded beam-to-column joints with beams of unequal depth. Journal of Constructional Steel Research, 2013, 91, 42-59.	3.9	26
125	Design of slip resistant lap joints with long open slotted holes. Journal of Constructional Steel Research, 2013, 82, 223-233.	3.9	34
126	Eigenvalue analysis of cylindrically curved panels under compressive stresses – Extension of rules from EN 1993-1-5. Thin-Walled Structures, 2013, 68, 183-194.	5.3	25

#	Article	IF	Citations
127	Experimental behaviour of heated composite steel–concrete joints subject to variable bending moments and axial forces. Engineering Structures, 2013, 51, 150-165.	5.3	17
128	Numerical modeling of composite beam to reinforced concrete wall joints. Engineering Structures, 2013, 52, 747-761.	5.3	47
129	Numerical modeling of composite beam to reinforced concrete wall joints. Engineering Structures, 2013, 52, 734-746.	5.3	16
130	Experimental behaviour of the reverse channel joint component at elevated and ambient temperatures. International Journal of Steel Structures, 2013, 13, 459-472.	1.3	10
131	A design approach for sustainable bridges – Part 2: case studies. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 201-214.	0.7	1
132	A design approach for sustainable bridges – Part 1: Methodology. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2013, 166, 191-200.	0.7	3
133	Life-cycle social analysis of motorway bridges. Structure and Infrastructure Engineering, 2013, 9, 1019-1039.	3.7	24
134	Design model for composite beam-to-reinforced concrete wall joints. Steel Construction, 2013, 6, 19-26.	0.8	2
135	Behaviour of steel-to-concrete joints. Steel Construction, 2012, 5, 145-150.	0.8	2
136	A comparison of the fatigue behavior between S355 and S690 steel grades. Journal of Constructional Steel Research, 2012, 79, 140-150.	3.9	150
137	A component model for welded beamâ€toâ€column joints with beams of unequal depth. Stahlbau, 2012, 81, 290-303.	0.1	7
138	Numerical analysis of stainless steel beam-columns in case of fire. Fire Safety Journal, 2012, 50, 35-50.	3.1	31
139	A probabilistic decision-making approach for the sustainable assessment of infrastructures. Expert Systems With Applications, 2012, 39, 7121-7131.	7.6	75
140	Development of a consistent buckling design procedure for tapered columns. Journal of Constructional Steel Research, 2012, 72, 61-74.	3.9	43
141	Structural monitoring of a wind turbine steel tower - Part I: system description and calibration. Wind and Structures, an International Journal, 2012, 15, 285-299.	0.8	13
142	Structural monitoring of a wind turbine steel tower - Part II: monitoring results. Wind and Structures, an International Journal, 2012, 15, 301-311.	0.8	8
143	Behaviour of steel-to-concrete joints - moment resisting joint of a composite beam to reinforced concrete wall. Steel Construction, 2011, 4, 161-165.	0.8	3
144	Parametric analysis of the thermal performance of light steel residential buildings in Csb climatic regions. Journal of Building Physics, 2011, 35, 7-53.	2.4	17

#	Article	IF	CITATIONS
145	Axially Loaded Stainless Steel Columns in Case of Fire. Journal of Structural Fire Engineering, 2010, 1, 43-60.	0.8	22
146	Numerical Modelling of Thin-Walled Stainless Steel Structural Elements in Case of Fire. Fire Technology, 2010, 46, 91-108.	3.0	15
147	Numerical Modelling of the Influence of Joint Typologies on the 3D Behaviour of a Steel Sub-Frame Under a Natural Fire. Fire Technology, 2010, 46, 49-65.	3.0	7
148	Numerical validation of the general method in EC3-1-1 for prismatic members. Journal of Constructional Steel Research, 2010, 66, 575-590.	3.9	30
149	Influence of ballast models in the dynamic response of railway viaducts. Journal of Sound and Vibration, 2010, 329, 3030-3040.	3.9	57
150	Friction connection in tubular towers for a wind turbine. Stahlbau, 2010, 79, 660-668.	0.1	21
151	Architectural concept for multi-storey apartment building with light steel framing. Steel Construction, 2010, 3, 163-168.	0.8	1
152	Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 2: Variability of steel properties. Journal of Constructional Steel Research, 2009, 65, 832-849.	3.9	83
153	Statistical evaluation of the lateral–torsional buckling resistance of steel I-beams, Part 1: Variability of the Eurocode 3 resistance model. Journal of Constructional Steel Research, 2009, 65, 818-831.	3.9	65
154	Calibration of model parameters for the cyclic response of end-plate beam-to-column steel-concrete composite joints. Steel and Composite Structures, 2009, 9, 39-58.	1.3	14
155	Towards a consistent design approach for steel joints under generalized loading. Journal of Constructional Steel Research, 2008, 64, 1059-1075.	3.9	56
156	Lateral–torsional buckling of stainless steel I-beams in case of fire. Journal of Constructional Steel Research, 2008, 64, 1302-1309.	3.9	31
157	Numerical study of a steel sub-frame in fire. Computers and Structures, 2008, 86, 1619-1632.	4.4	21
158	Dynamic behaviour of twin single-span ballasted railway viaducts — Field measurements and modal identification. Engineering Structures, 2008, 30, 2460-2469.	5 . 3	82
159	Comparative life-cycle analysis of steel-concrete composite bridges. Structure and Infrastructure Engineering, 2008, 4, 251-269.	3.7	46
160	Experimental investigation of the behaviour of a steel sub-frame under a natural fire. Steel and Composite Structures, 2008, 8, 243-264.	1.3	20
161	Parametric analysis of the lateral–torsional buckling resistance of steel beams in case of fire. Fire Safety Journal, 2007, 42, 416-424.	3.1	56
162	Finite-Element Modeling of the Nonlinear Behavior of Bolted T-Stub Connections. Journal of Structural Engineering, 2006, 132, 918-928.	3.4	77

#	Article	IF	Citations
163	Experimental behaviour of a steel structure under natural fire. Fire Safety Journal, 2006, 41, 509-522.	3.1	201
164	Ductility analysis of bolted extended end plate beam-to-column connections in the framework of the component method. Steel and Composite Structures, 2006, 6, 33-53.	1.3	35
165	Asymmetric Secondary Buckling in Monosymmetric Sandwich Struts. Journal of Applied Mechanics, Transactions ASME, 2005, 72, 683.	2.2	12
166	Behaviour of steel joints under fire loading. Steel and Composite Structures, 2005, 5, 485-513.	1.3	32
167	Experimental assessment of the ductility of extended end plate connections. Engineering Structures, 2004, 26, 1185-1206.	5.3	121
168	Experimental evaluation of extended endplate beam-to-column joints subjected to bending and axial force. Engineering Structures, 2004, 26, 1333-1347.	5.3	60
169	Numerical modelling of steel beam-columns in case of fire—comparisons with Eurocode 3. Fire Safety Journal, 2004, 39, 23-39.	3.1	28
170	The effect of residual stresses in the lateral-torsional buckling of steel I-beams at elevated temperature. Journal of Constructional Steel Research, 2004, 60, 783-793.	3.9	54
171	Reliability assessment of the post-limit stiffness and ductility of steel joints. Journal of Constructional Steel Research, 2004, 60, 635-648.	3.9	18
172	A unified energy formulation for the stability analysis of open and closed thin-walled members in the framework of the generalized beam theory. Thin-Walled Structures, 2004, 42, 1495-1517.	5.3	17
173	Experimental assessment of the behaviour of bolted T-stub connections made up of welded plates. Journal of Constructional Steel Research, 2004, 60, 269-311.	3.9	115
174	Lateral-torsional buckling of unrestrained steel beams under fire conditions: improvement of EC3 proposal. Computers and Structures, 2004, 82, 1737-1744.	4.4	37
175	New proposals for the design of steel beam-columns in case of fire, including a new approach for the lateral–torsional buckling. Computers and Structures, 2004, 82, 1463-1472.	4.4	14
176	Behaviour of flush end-plate beam-to-column joints under bending and axial force. Steel and Composite Structures, 2004, 4, 77-94.	1.3	66
177	Rotational Stiffness of Rectangular Hollow Sections Composite Joints. Journal of Structural Engineering, 2003, 129, 487-494.	3.4	29
178	Towards a consistant safety format of steel beam-columns: application of the new interaction formulae for ambient temperature to elevated temperatures. Steel and Composite Structures, 2003, 3, 383-401.	1.3	13
179	Post-limit stiffness and ductility of end-plate beam-to-column steel joints. Computers and Structures, 2002, 80, 515-531.	4.4	75
180	Experimental and mechanical model for predicting the behaviour of minor axis beam-to-column semi-rigid joints. International Journal of Mechanical Sciences, 2002, 44, 1047-1065.	6.7	50

#	Article	IF	CITATIONS
181	Experimental behaviour of end-plate beam-to-column composite joints under monotonical loading. Engineering Structures, 2001, 23, 1383-1409.	5.3	57
182	An analytical evaluation of the response of steel joints under bending and axial force. Computers and Structures, 2001, 79, 873-881.	4.4	31
183	A ductility model for steel connections. Journal of Constructional Steel Research, 2001, 57, 45-70.	3.9	53
184	A component model for the behaviour of steel joints at elevated temperatures. Journal of Constructional Steel Research, 2001, 57, 1169-1195.	3.9	65
185	Cyclic behaviour of end-plate beam-to-column composite joints. Steel and Composite Structures, 2001, 1, 355-376.	1.3	27
186	Equivalent post-buckling models for the flexural behaviour of steel connections. Computers and Structures, 2000, 77, 615-624.	4.4	24
187	Localised formulations for thick "sandwich" laminated and composite structures. Computational Mechanics, 1998, 22, 211-224.	4.0	12
188	Database for the semi-rigid behaviour of beam-to-column connections in seismic regions. Journal of Constructional Steel Research, 1998, 46, 233-234.	3.9	25
189	Interactive Bending Behavior of Sandwich Beams. Journal of Applied Mechanics, Transactions ASME, 1990, 57, 189-196.	2.2	20
190	Interactive Buckling in Sandwich Structures with Core Orthotropy. Mechanics Based Design of Structures and Machines, 1990, 18, 353-372.	0.6	15
191	Interactive buckling in sandwich structures. Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences, 1988, 417, 155-177.	1.4	58