Sunil Sudarshan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1080378/publications.pdf Version: 2024-02-01

SUNIL SUDADSHAN

#	Article	IF	CITATIONS
1	The TGF-β/HDAC7 axis suppresses TCA cycle metabolism in renal cancer. JCI Insight, 2021, 6, .	5.0	9
2	14-3-3 proteins protect AMPK-phosphorylated ten-eleven translocation-2 (TET2) from PP2A-mediated dephosphorylation. Journal of Biological Chemistry, 2020, 295, 1754-1766.	3.4	21
3	PGC1α suppresses kidney cancer progression by inhibiting collagen-induced SNAIL expression. Matrix Biology, 2020, 89, 43-58.	3.6	17
4	PRDM16 suppresses HIF-targeted gene expression in kidney cancer. Journal of Experimental Medicine, 2020, 217, .	8.5	33
5	Teleological Role of L-2-Hydroxyglutarate Dehydrogenase in the Kidney. DMM Disease Models and Mechanisms, 2020, 13, .	2.4	8
6	The oncometabolite L-2-hydroxyglutarate is a common product of dipteran larval development. Insect Biochemistry and Molecular Biology, 2020, 127, 103493.	2.7	7
7	Metastatic prostate cancer to an ischiorectal fossa lymph node identified on multiparametric magnetic resonance imaging. Urology Annals, 2020, 12, 172.	0.6	1
8	Integrative Epigenetic and Gene Expression Analysis of Renal Tumor Progression to Metastasis. Molecular Cancer Research, 2019, 17, 84-96.	3.4	37
9	Biochemical and Epigenetic Insights into L-2-Hydroxyglutarate, a Potential Therapeutic Target in Renal Cancer. Clinical Cancer Research, 2018, 24, 6433-6446.	7.0	54
10	Genetics of renal cancer: focus on MTOR. Aging, 2016, 8, 421-422.	3.1	6
11	High Throughput Kinomic Profiling of Human Clear Cell Renal Cell Carcinoma Identifies Kinase Activity Dependent Molecular Subtypes. PLoS ONE, 2015, 10, e0139267.	2.5	34
12	Point mutations of the mTOR-RHEB pathway in renal cell carcinoma. Oncotarget, 2015, 6, 17895-17910.	1.8	63
13	Another small molecule in the oncometabolite mix: L-2-Hydroxyglutarate in kidney cancer. Oncoscience, 2015, 2, 483-486.	2.2	16
14	The Oncometabolite Fumarate Promotes Pseudohypoxia Through Noncanonical Activation of NF-κB Signaling. Journal of Biological Chemistry, 2014, 289, 24691-24699.	3.4	44
15	<scp>l</scp> -2-Hydroxyglutarate: An Epigenetic Modifier and Putative Oncometabolite in Renal Cancer. Cancer Discovery, 2014, 4, 1290-1298.	9.4	226
16	Do the Sites of Metastases Provide Additional Information Regarding Prognosis and Biology in Renal Cell Carcinoma?. European Urology, 2014, 65, 585-586.	1.9	3
17	Metabolism of Kidney Cancer: From the Lab to Clinical Practice. European Urology, 2013, 63, 244-251.	1.9	61
18	The Proto-oncometabolite Fumarate Binds Glutathione to Amplify ROS-Dependent Signaling. Molecular Cell, 2013, 51, 236-248.	9.7	244

#	Article	IF	CITATIONS
19	Increasing reactive oxygen species as a therapeutic approach to treat hereditary leiomyomatosis and renal cell carcinoma. Cell Cycle, 2010, 9, 4183-4189.	2.6	25
20	Fumarate Hydratase Deficiency in Renal Cancer Induces Glycolytic Addiction and Hypoxia-Inducible Transcription Factor 1α Stabilization by Glucose-Dependent Generation of Reactive Oxygen Species. Molecular and Cellular Biology, 2009, 29, 4080-4090.	2.3	212