Jens Kober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1080333/publications.pdf Version: 2024-02-01

IENS KORED

#	Article	IF	CITATIONS
1	Learning Assembly Tasks in a Few Minutes by Combining Impedance Control and Residual Recurrent Reinforcement Learning. Advanced Intelligent Systems, 2022, 4, 2100095.	3.3	6
2	Learning Task-Parameterized Skills From Few Demonstrations. IEEE Robotics and Automation Letters, 2022, 7, 4063-4070.	3.3	4
3	Challenges and Outlook in Robotic Manipulation of Deformable Objects. IEEE Robotics and Automation Magazine, 2022, 29, 67-77.	2.2	43
4	Learning to Pick at Non-Zero-Velocity From Interactive Demonstrations. IEEE Robotics and Automation Letters, 2022, 7, 6052-6059.	3.3	5
5	Interactive Learning of Sensor Policy Fusion. , 2021, , .		0
6	Robot technology in dentistry, part one of a systematic review: literature characteristics. Dental Materials, 2021, 37, 1217-1226.	1.6	21
7	Robot technology in dentistry, part two of a systematic review: an overview of initiatives. Dental Materials, 2021, 37, 1227-1236.	1.6	23
8	GEM: Glare or Gloom, I Can Still See You – End-to-End Multi-Modal Object Detection. IEEE Robotics and Automation Letters, 2021, 6, 6321-6328.	3.3	3
9	Robot Learning. , 2021, , 1893-1901.		0
10	ILoSA: Interactive Learning of Stiffness and Attractors. , 2021, , .		6
11	DeepKoCo: Efficient latent planning with a task-relevant Koopman representation. , 2021, , .		0
12	Uncertainties based queries for Interactive policy learning with evaluations and corrections. , 2021, , .		0
13	Deep Learning and Machine Learning in Robotics [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2020, 27, 20-21.	2.2	5
14	Interactive Learning of Temporal Features for Control: Shaping Policies and State Representations From Human Feedback. IEEE Robotics and Automation Magazine, 2020, 27, 46-54.	2.2	6
15	Learning Sequential Force Interaction Skills. Robotics, 2020, 9, 45.	2.1	7
16	Fine-tuning Deep RL with Gradient-Free Optimization. IFAC-PapersOnLine, 2020, 53, 8049-8056.	0.5	2
17	Robot Learning. , 2020, , 1-9.		0
18	A fast hybrid reinforcement learning framework with human corrective feedback. Autonomous Robots, 2019, 43, 1173-1186.	3.2	13

Jens Kober

#	Article	IF	CITATIONS
19	Simultaneous Learning of Objective Function and Policy from Interactive Teaching with Corrective Feedback. , 2019, , .		0
20	Continuous Control for High-Dimensional State Spaces: An Interactive Learning Approach. , 2019, , .		8
21	Reinforcement learning of motor skills using Policy Search and human corrective advice. International Journal of Robotics Research, 2019, 38, 1560-1580.	5.8	15
22	Deep Reinforcement Learning with Feedback-based Exploration. , 2019, , .		1
23	A Practical Bayesian Optimization Approach for the Optimal Estimation of the Rotor Effective Wind Speed. , 2019, , .		5
24	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247.	4.3	77
25	Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2018, 3, 1394-1401.	3.3	72
26	Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations. IEEE Robotics and Automation Letters, 2018, 3, 926-933.	3.3	9
27	Head-tracked off-axis perspective projection improves gaze readability of 3D virtual avatars. , 2018, , .		1
28	Human-Robot Cooperative Object Manipulation with Contact Changes. , 2018, , .		13
29	Reinforcement learning for control: Performance, stability, and deep approximators. Annual Reviews in Control, 2018, 46, 8-28.	4.4	231
30	Learning state representation for deep actor-critic control. , 2016, , .		25
31	Probabilistic decomposition of sequential force interaction tasks into Movement Primitives. , 2016, , .		6
32	Improved deep reinforcement learning for robotics through distribution-based experience retention. , 2016, , .		17
33	Robot Learning. Springer Handbooks, 2016, , 357-398.	0.3	11
34	Reinforcement Learning of Potential Fields to achieve Limit-Cycle Walking. IFAC-PapersOnLine, 2016, 49, 113-118.	0.5	6
35	Learning movement primitives for force interaction tasks. , 2015, , .		27
36	Probabilistic progress prediction and sequencing of concurrent movement primitives. , 2015, , .		6

Jens Kober

#	Article	IF	CITATIONS
37	Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 2015, 74, 97-107.	3.0	39
38	Learning motor skills: from algorithms to robot experiments. IT - Information Technology, 2014, 56, 141-146.	0.6	16
39	Learning to sequence movement primitives from demonstrations. , 2014, , .		30
40	Learning Motor Skills. Springer Tracts in Advanced Robotics, 2014, , .	0.3	17
41	Reinforcement Learning in Robotics: A Survey. Springer Tracts in Advanced Robotics, 2014, , 9-67.	0.3	47
42	Policy Search for Motor Primitives in Robotics. Springer Tracts in Advanced Robotics, 2014, , 83-117.	0.3	52
43	Experiments with Motor Primitives in Table Tennis. Springer Tracts in Advanced Robotics, 2014, , 347-359.	0.3	3
44	Reinforcement learning in robotics: A survey. International Journal of Robotics Research, 2013, 32, 1238-1274.	5.8	1,730
45	Learning to select and generalize striking movements in robot table tennis. International Journal of Robotics Research, 2013, 32, 263-279.	5.8	264
46	Towards Robot Skill Learning: From Simple Skills to Table Tennis. Lecture Notes in Computer Science, 2013, , 627-631.	1.0	14
47	Learning throwing and catching skills. , 2012, , .		9
48	Reinforcement Learning in Robotics: A Survey. Adaptation, Learning, and Optimization, 2012, , 579-610.	0.5	92
49	Reinforcement learning to adjust parametrized motor primitives to new situations. Autonomous Robots, 2012, 33, 361-379.	3.2	128
50	Playing catch and juggling with a humanoid robot. , 2012, , .		54
51	Learning elementary movements jointly with a higher level task. , 2011, , .		7
52	Learning elementary movements jointly with a higher level task. , 2011, , .		0
53	Policy search for motor primitives in robotics. Machine Learning, 2011, 84, 171-203.	3.4	200
54	Towards Motor Skill Learning for Robotics. Springer Tracts in Advanced Robotics, 2011, , 469-482.	0.3	15

JENS KOBER IF ARTICLE CITATIONS Imitation and Reinforcement Learning. IEEE Robotics and Automation Magazine, 2010, 17, 55-62. 2.2 Algorithmen zum Automatischen Erlernen von MotorfÄßigkeiten. Automatisierungstechnik, 2010, 58, . 0.4 0 A biomimetic approach to robot table tennis., 2010,,. Movement templates for learning of hitting and batting., 2010,,. 101 Learning table tennis with a Mixture of Motor Primitives., 2010,,. Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling. Studies in Computational Intelligence, 2010, , 209-225. 0.7 8 Simulating Human Table Tennis with a Biomimetic Robot Setup. Lecture Notes in Computer Science, 1.0 2010, , 273-282. Using reward-weighted imitation for robot Reinforcement Learning., 2009,,. 7 Learning motor primitives for robotics., 2009,,. Denoising photographs using dark frames optimized by quadratic programming., 2009,,. 1 Learning New Basic Movements for Robotics. Informatik Aktuell, 2009, , 105-112. 0.4 Learning perceptual coupling for motor primitives., 2008,,. 55

67Policy Learning â€" A Unified Perspective with Applications in Robotics. Lecture Notes in Computer
Science, 2008, , 220-228.1.03

88

Reinforcement Learning to adjust Robot Movements to New Situations. , 0, , .

#

56

58

60

62

64

66