Jens Kober

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1080333/publications.pdf

Version: 2024-02-01

68
papers

4,057 citations

16 h-index 288905 40 g-index

72 all docs

72 docs citations

times ranked

72

3044 citing authors

#	Article	IF	CITATIONS
1	Reinforcement learning in robotics: A survey. International Journal of Robotics Research, 2013, 32, 1238-1274.	5.8	1,730
2	Learning to select and generalize striking movements in robot table tennis. International Journal of Robotics Research, 2013, 32, 263-279.	5.8	264
3	Reinforcement learning for control: Performance, stability, and deep approximators. Annual Reviews in Control, 2018, 46, 8-28.	4.4	231
4	Policy search for motor primitives in robotics. Machine Learning, 2011, 84, 171-203.	3.4	200
5	Learning motor primitives for robotics. , 2009, , .		131
6	Reinforcement learning to adjust parametrized motor primitives to new situations. Autonomous Robots, 2012, 33, 361-379.	3.2	128
7	Movement templates for learning of hitting and batting. , 2010, , .		101
8	Imitation and Reinforcement Learning. IEEE Robotics and Automation Magazine, 2010, 17, 55-62.	2.2	96
9	Reinforcement Learning in Robotics: A Survey. Adaptation, Learning, and Optimization, 2012, , 579-610.	0.5	92
10	Reinforcement Learning to adjust Robot Movements to New Situations. , 0, , .		88
10	Reinforcement Learning to adjust Robot Movements to New Situations., 0, , . Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247.	4.3	77
	Reinforcement learning based compensation methods for robot manipulators. Engineering	4.3	
11	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247. Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and		77
11 12	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247. Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2018, 3, 1394-1401.		77 72
11 12 13	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247. Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2018, 3, 1394-1401. Learning table tennis with a Mixture of Motor Primitives., 2010, ,.		77 72 69
11 12 13 14	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247. Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2018, 3, 1394-1401. Learning table tennis with a Mixture of Motor Primitives., 2010,,		77 72 69 55
11 12 13 14	Reinforcement learning based compensation methods for robot manipulators. Engineering Applications of Artificial Intelligence, 2019, 78, 236-247. Integrating State Representation Learning Into Deep Reinforcement Learning. IEEE Robotics and Automation Letters, 2018, 3, 1394-1401. Learning table tennis with a Mixture of Motor Primitives., 2010,, Learning perceptual coupling for motor primitives., 2008,,	3.3	77 72 69 55

#	Article	IF	Citations
19	Learning movement primitive attractor goals and sequential skills from kinesthetic demonstrations. Robotics and Autonomous Systems, 2015, 74, 97-107.	3.0	39
20	Learning to sequence movement primitives from demonstrations. , 2014, , .		30
21	Learning movement primitives for force interaction tasks. , 2015, , .		27
22	A biomimetic approach to robot table tennis. , 2010, , .		25
23	Learning state representation for deep actor-critic control. , 2016, , .		25
24	Robot technology in dentistry, part two of a systematic review: an overview of initiatives. Dental Materials, 2021, 37, 1227-1236.	1.6	23
25	Robot technology in dentistry, part one of a systematic review: literature characteristics. Dental Materials, 2021, 37, 1217-1226.	1.6	21
26	Learning Motor Skills. Springer Tracts in Advanced Robotics, 2014, , .	0.3	17
27	Improved deep reinforcement learning for robotics through distribution-based experience retention. , $2016,$, .		17
28	Learning motor skills: from algorithms to robot experiments. IT - Information Technology, 2014, 56, 141-146.	0.6	16
29	Reinforcement learning of motor skills using Policy Search and human corrective advice. International Journal of Robotics Research, 2019, 38, 1560-1580.	5.8	15
30	Towards Motor Skill Learning for Robotics. Springer Tracts in Advanced Robotics, 2011, , 469-482.	0.3	15
31	Towards Robot Skill Learning: From Simple Skills to Table Tennis. Lecture Notes in Computer Science, 2013, , 627-631.	1.0	14
32	Human-Robot Cooperative Object Manipulation with Contact Changes. , 2018, , .		13
33	A fast hybrid reinforcement learning framework with human corrective feedback. Autonomous Robots, 2019, 43, 1173-1186.	3.2	13
34	Simulating Human Table Tennis with a Biomimetic Robot Setup. Lecture Notes in Computer Science, 2010, , 273-282.	1.0	13
35	Robot Learning. Springer Handbooks, 2016, , 357-398.	0.3	11
36	Learning throwing and catching skills. , 2012, , .		9

#	Article	IF	CITATIONS
37	Mixture of Attractors: A Novel Movement Primitive Representation for Learning Motor Skills From Demonstrations. IEEE Robotics and Automation Letters, 2018, 3, 926-933.	3.3	9
38	Continuous Control for High-Dimensional State Spaces: An Interactive Learning Approach. , 2019, , .		8
39	Imitation and Reinforcement Learning for Motor Primitives with Perceptual Coupling. Studies in Computational Intelligence, 2010, , 209-225.	0.7	8
40	Using reward-weighted imitation for robot Reinforcement Learning. , 2009, , .		7
41	Learning elementary movements jointly with a higher level task. , 2011, , .		7
42	Learning Sequential Force Interaction Skills. Robotics, 2020, 9, 45.	2.1	7
43	Probabilistic progress prediction and sequencing of concurrent movement primitives., 2015,,.		6
44	Probabilistic decomposition of sequential force interaction tasks into Movement Primitives. , 2016, , .		6
45	Reinforcement Learning of Potential Fields to achieve Limit-Cycle Walking. IFAC-PapersOnLine, 2016, 49, 113-118.	0.5	6
46	Interactive Learning of Temporal Features for Control: Shaping Policies and State Representations From Human Feedback. IEEE Robotics and Automation Magazine, 2020, 27, 46-54.	2.2	6
47	Learning Assembly Tasks in a Few Minutes by Combining Impedance Control and Residual Recurrent Reinforcement Learning. Advanced Intelligent Systems, 2022, 4, 2100095.	3.3	6
48	ILoSA: Interactive Learning of Stiffness and Attractors. , 2021, , .		6
49	A Practical Bayesian Optimization Approach for the Optimal Estimation of the Rotor Effective Wind Speed., 2019,,.		5
50	Deep Learning and Machine Learning in Robotics [From the Guest Editors]. IEEE Robotics and Automation Magazine, 2020, 27, 20-21.	2.2	5
51	Learning to Pick at Non-Zero-Velocity From Interactive Demonstrations. IEEE Robotics and Automation Letters, 2022, 7, 6052-6059.	3.3	5
52	Learning Task-Parameterized Skills From Few Demonstrations. IEEE Robotics and Automation Letters, 2022, 7, 4063-4070.	3.3	4
53	GEM: Glare or Gloom, I Can Still See You – End-to-End Multi-Modal Object Detection. IEEE Robotics and Automation Letters, 2021, 6, 6321-6328.	3.3	3
54	Policy Learning – A Unified Perspective with Applications in Robotics. Lecture Notes in Computer Science, 2008, , 220-228.	1.0	3

#	Article	IF	Citations
55	Experiments with Motor Primitives in Table Tennis. Springer Tracts in Advanced Robotics, 2014, , 347-359.	0.3	3
56	Learning New Basic Movements for Robotics. Informatik Aktuell, 2009, , 105-112.	0.4	2
57	Fine-tuning Deep RL with Gradient-Free Optimization. IFAC-PapersOnLine, 2020, 53, 8049-8056.	0.5	2
58	Denoising photographs using dark frames optimized by quadratic programming. , 2009, , .		1
59	Head-tracked off-axis perspective projection improves gaze readability of 3D virtual avatars. , 2018, , .		1
60	Deep Reinforcement Learning with Feedback-based Exploration. , 2019, , .		1
61	Algorithmen zum Automatischen Erlernen von MotorfÄ H igkeiten. Automatisierungstechnik, 2010, 58, .	0.4	0
62	Learning elementary movements jointly with a higher level task. , 2011, , .		0
63	Simultaneous Learning of Objective Function and Policy from Interactive Teaching with Corrective Feedback. , 2019, , .		0
64	Interactive Learning of Sensor Policy Fusion. , 2021, , .		0
65	Robot Learning. , 2021, , 1893-1901.		0
66	Robot Learning. , 2020, , 1-9.		0
67	DeepKoCo: Efficient latent planning with a task-relevant Koopman representation. , 2021, , .		0
68	Uncertainties based queries for Interactive policy learning with evaluations and corrections., 2021,,.		O