
Charles L Bormann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10802743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An automated smartphone-based diagnostic assay for point-of-care semen analysis. Science Translational Medicine, 2017, 9, .	12.4	139
2	Cryopreserved embryo transfer isÂanÂindependent risk factor forÂplacenta accreta. Fertility and Sterility, 2015, 103, 1176-1184.e2.	1.0	129
3	Artificial intelligence and machine learning for human reproduction and embryology presented at ASRM and ESHRE 2018. Journal of Assisted Reproduction and Genetics, 2019, 36, 591-600.	2.5	98
4	Performance of a deep learning based neural network in the selection of human blastocysts for implantation. ELife, 2020, 9, .	6.0	69
5	Consistency and objectivity of automated embryo assessments using deep neural networks. Fertility and Sterility, 2020, 113, 781-787.e1.	1.0	58
6	Artificial intelligence in the embryology laboratory: a review. Reproductive BioMedicine Online, 2022, 44, 435-448.	2.4	39
7	A pilot randomized controlled trial of Day 3 single embryo transfer with adjunctive time-lapse selection versus Day 5 single embryo transfer with or without adjunctive time-lapse selection. Human Reproduction, 2017, 32, 1598-1603.	0.9	38
8	Development and evaluation of inexpensive automated deep learning-based imaging systems for embryology. Lab on A Chip, 2019, 19, 4139-4145.	6.0	31
9	Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality. Heliyon, 2021, 7, e06298.	3.2	29
10	Prenatal testosterone and dihydrotestosterone exposure disrupts ovine testicular development. Reproduction, 2011, 142, 167-173.	2.6	27
11	Deep learning early warning system for embryo culture conditions and embryologist performance in the ART laboratory. Journal of Assisted Reproduction and Genetics, 2021, 38, 1641-1646.	2.5	23
12	Automated smartphone-based system for measuring sperm viability, DNA fragmentation, and hyaluronic binding assay score. PLoS ONE, 2019, 14, e0212562.	2.5	21
13	Müllerian-Inhibiting Substance/Anti-Müllerian Hormone as a Predictor of Preterm Birth in Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 4187-4196.	3.6	18
14	A patient-specific model combining antimüllerian hormone and body mass index as a predictor of polycystic ovary syndrome and other oligo-anovulation disorders. Fertility and Sterility, 2021, 115, 229-237.	1.0	18
15	Human sperm morphology analysis usingÂsmartphone microscopy and deepÂlearning. Fertility and Sterility, 2019, 112, e41.	1.0	15
16	Adaptive adversarial neural networks for the analysis of lossy and domain-shifted datasets of medical images. Nature Biomedical Engineering, 2021, 5, 571-585.	22.5	15
17	Deep convolutional neural networks (CNN) for assessment and selection ofÂnormally fertilized human embryos. Fertility and Sterility, 2019, 112, e272.	1.0	9
18	Automated quality assessment of individual embryologists performing ICSIÂusing deep learning-enabled fertilization and embryo grading technology. Fertility and Sterility, 2019, 112, e71.	1.0	8

#	Article	IF	CITATIONS
19	Induction of chemokines and prostaglandin synthesis pathways in luteinized human granulosa cells: potential role of luteotropin withdrawal and prostaglandin F21± in regression of the human corpus luteum. Reproductive Biology, 2015, 15, 247-256.	1.9	7
20	The effect of semen collection location and time to processing on sperm parameters and early IVF/ICSI outcomes. Journal of Assisted Reproduction and Genetics, 2021, 38, 1449-1457.	2.5	7
21	Is the presence of an uncleaved embryo on day 3 a useful predictor of outcomes following day 5 transfer?. Journal of Assisted Reproduction and Genetics, 2015, 32, 1379-1384.	2.5	6
22	Pretreatment antimüllerian hormone levels and outcomes of ovarian stimulation with gonadotropins/intrauterine insemination cycles. Fertility and Sterility, 2021, 116, 422-430.	1.0	6
23	The impact of single-step and sequential embryo culture systems on obstetric and perinatal outcomes in singleton pregnancies: the Massachusetts Outcomes Study of Assisted Reproductive Technology. Fertility and Sterility, 2022, 117, 1246-1254.	1.0	6
24	A deep learning framework outperforms embryologists in selecting day 5 euploid blastocysts with the highest implantation potential. Fertility and Sterility, 2019, 112, e77-e78.	1.0	5
25	Predicting blastocyst formation of dayÂ3Âembryos using a convolutional neural network (CNN): a machine learningÂapproach. Fertility and Sterility, 2019, 112, e272-e273.	1.0	5
26	Improved monitoring of human embryo culture conditions using a deep learning-derived key performance indicator (KPI). Fertility and Sterility, 2019, 112, e70-e71.	1.0	4
27	Response to ovulation induction treatments in women with polycystic ovary syndrome as a function of serum anti-Müllerian hormone levels. Journal of Assisted Reproduction and Genetics, 2021, 38, 1827-1833.	2.5	4
28	Deep learning-enabled prediction of fertilization based on oocyte morphological quality. Fertility and Sterility, 2019, 112, e275.	1.0	3
29	FUTURE OF AUTOMATION: USE OF DEEP CONVOLUTIONAL NEURAL NETWORKS (CNN) TO IDENTIFY PRECISE LOCATION TO PERFORM LASER ASSISTED HATCHING ON HUMAN CLEAVAGE STAGE EMBRYOS. Fertility and Sterility, 2020, 114, e144.	1.0	2
30	Deep learning can improve day 5 embryo scoring and decision making in an embryology laboratory. Fertility and Sterility, 2019, 112, e272.	1.0	1
31	Private equity comes knocking on your practice's door: a "fairy godmother―or the "big bad wolf?― Fertility and Sterility, 2022, 117, 131-132.	1.0	1
32	The effect of semen collection at home on intrauterine insemination outcomes. Andrology, 2022, , .	3.5	0