Gerard Cornuejols

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/10802184/publications.pdf
Version: 2024-02-01

2 Clean tangled clutters, simplices, and projective geometries. Journal of Combinatorial Theory Series B,
15 Ideal Clutters That Do Not Pack. Mathematics of Operations Research, 2018, 43, 533-553.
19 Cut-Generating Functions and <i>S</i>-Free Sets. Mathematics of Operations Research, 2015, 40, 276-391.

Special issue of Mathematical Programming, Series B, dedicated to the international symposium on

21 On the relative strength of families of intersection cuts arising from pairs of tableau constraints in
1.6
mixed integer programs. Mathematical Programming, 2015, 150, 459-489.
4

22 Sufficiency of cut-generating functions. Mathematical Programming, 2015, 152, 643-651.
1.6

9

23 Integer Programming. Graduate Texts in Mathematics, 2014, , .
0.4

322

24 Semidefinite Bounds. Graduate Texts in Mathematics, 2014, , 389-413.
0.4

25 Split and Gomory Inequalities. Graduate Texts in Mathematics, 2014, , 195-234.
0.4

26 On the safety of Gomory cut generators. Mathematical Programming Computation, 2013, 5, 345-395.
$3.2 \quad 8$
27 Unique lifting of integer variables in minimal inequalities. Mathematical Programming, 2013, 141,
561-576.
1.6

21

28 Lifting Gomory cuts with bounded variables. Operations Research Letters, 2013, 41, 142-146.
0.5

4

29 Extended formulations in combinatorial optimization. Annals of Operations Research, 2013, 204, 97-143.
$2.6 \quad 41$

30 A 3-Slope Theorem for the infinite relaxation in the plane. Mathematical Programming, 2013, 142, 83-105.
1.6

13

31 Combining Lift-and-Project and Reduce-and-Split. INFORMS Journal on Computing, 2013, 25, 475-487.
1.0

5

32 Cut-Generating Functions. Lecture Notes in Computer Science, 2013, , 123-132.
1.0

4

34 Unique Minimal Liftings for Simplicial Polytopes. Mathematics of Operations Research, 2012, 37, 346-355.
0.8

19

Mixed-integer nonlinear programs featuring â€œon/offâ€•constraints. Computational Optimization and
Applications, 2012, 52, 537-558.
39 Branching on general disjunctions. Mathematical Programming, 2011, 128, 403-436. 27
Corner polyhedron and intersection cuts. Surveys in Operations Research and Management Science,
$2011,16,105-120$.

42 Experiments with Two-Row Cuts from Degenerate Tableaux. INFORMS Journal on Computing, 2011, 23,
43 A Probabilistic Analysis of the Strength of the Split and Triangle Closures. Lecture Notes in Computer
Science, 2011, 27-38.
$44 \quad$ Maximal Lattice-Free Convex Sets in Linear Subspaces. Mathematics of Operations Research, 2010, 35, 704-720.
47 Mixed Integer NonLinear Programs featuring â€œOn/Offâ€•constraints: convex analysis and applications. Electronic Notes in Discrete Mathematics, 2010, 36, 1153-1160.
$0.4 \quad 8$48 Minimal Inequalities for an Infinite Relaxation of Integer Programs. SIAM Journal on DiscreteMathematics, 2010, 24, 158-168.
0.4

54

49 Polyhedral Approaches to Mixed Integer Linear Programming. , 2010, , 343-385.
21

50 On Lifting Integer Variables in Minimal Inequalities. Lecture Notes in Computer Science, 2010, , 85-95.
$1.0 \quad 9$

Minimal Valid Inequalities for Integer Constraints. Mathematics of Operations Research, 2009, 34,
0.8

74

55 Stable sets, corner polyhedra and the ChvÃ̈tal closure. Operations Research Letters, 2009, 37,
56 The ChvÃ̈ital closure of generalized stable sets in bidirected graphs. Electronic Notes in Discrete
$56 \quad \begin{aligned} & \text { Mathematics, 2009, 35, 89-95. }\end{aligned}$

57 On the Relative Strength of Split, Triangle and Quadrilateral Cuts., 2009, , . 7
$57 \quad$ On the Relative Strength of Split, Triangle and Quadrilateral Cuts. , 2009, , . 7

Projected ChvÃjtalâ€"Gomory cuts for mixed integer linear programs. Mathematical Programming, 2008, 113, 241-257.

59 A note on the MIR closure. Operations Research Letters, 2008, 36, 4-6.
$\begin{array}{ll}0.5 & 10\end{array}$

An algorithmic framework for convex mixed integer nonlinear programs. Discrete Optimization, 2008, 5, 186-204.
0.6

622

61 Valid inequalities for mixed integer linear programs. Mathematical Programming, 2007, 112, 3-44.
1.6

136

62 Revival of the Gomory cuts in the 1990 â $€^{\mathrm{TM}}$ s. Annals of Operations Research, 2007, 149, 63-66.
2.6

27

63 Balanced matrices. Discrete Mathematics, 2006, 306, 2411-2437.
0.4

23

64 Decomposing Berge Graphs Containing No Proper Wheel, Long Prism Or Their Complements.
Combinatorica, 2006, 26, 533-558.

Odd Hole Recognition in Graphs of Bounded Clique Size. SIAM Journal on Discrete Mathematics, 2006,
20, 42-48.
0.4

11

66 Balanced Matrices. Handbooks in Operations Research and Management Science, 2005, 12, 277-319.
0.6

3

Reduce-and-Split Cuts: Improving the Performance of Mixed-Integer Gomory Cuts. Management Science,
2005, $51,1720-1732$.

68 Recognizing Berge Graphs. Combinatorica, 2005, 25, 143-186.
0.6

234

69 Split closure and intersection cuts. Mathematical Programming, 2005, 102, 457-493.
1.6

65

70 Square-free perfect graphs. Journal of Combinatorial Theory Series B, 2004, 90, 257-307.
0.6

20

71 Decomposition of odd-hole-free graphs by double star cutsets and 2-joins. Discrete Applied
Mathematics, 2004, 141, 41-91.
0.5

18
0.6

11

K-Cuts: A Variation of Gomory Mixed Integer Cuts from the LP Tableau. INFORMS Journal on Computing,
1.0

3077 A connection between cutting plane theory and the geometry of numbers. Mathematical Programming,1.62002, 93, 123-127.
1.6
83 Balanced $0, \hat{A} \hat{A} \pm 1$ Matrices II. Recognition Algorithm. Journal of Combinatorial Theory Series B, 2001, 81, 275-306.
93 Universally signable graphs. Combinatorica, 1997, 17, 67-77. 27

94 Perfect 0, Â ± 1 matrices. Linear Algebra and Its Applications, 1997, 253, 299-309.

Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework. Management Science, 1996,
42, 1229-1246.97 Polyhedral methods for the maximum clique problem. DIMACS Series in Discrete Mathematics and
$0.0 \quad 23$
Theoretical Computer Science, 1996, , 11-28.
0.0
23

Balanced 0, Â ± 1-matrices, bicoloring and total dual integrality. Mathematical Programming, 1995, 71, 249-258.
1.6

21

99 A class of logic problems solvable by linear programming. Journal of the ACM, 1995, 42, 1107-1112.

1.8

30

A matroid algorithm and its application to the efficient solution of two optimization problems on

A Canonical Representation of Simple Plant Location Problems and Its Applications. SIAM Journal on

