
Ray A Bressan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/10800488/publications.pdf Version: 2024-02-01

RAV A RDESSAN

#	Article	IF	CITATIONS
1	Non-CG DNA methylation-deficiency mutations enhance mutagenesis rates during salt adaptation in cultured Arabidopsis cells. Stress Biology, 2021, 1, 1.	3.1	7
2	Abscisic acid dynamics, signaling, and functions in plants. Journal of Integrative Plant Biology, 2020, 62, 25-54.	8.5	771
3	BONZAI Proteins Control Global Osmotic Stress Responses in Plants. Current Biology, 2020, 30, 4815-4825.e4.	3.9	39
4	AtPR5K2, a PR5-Like Receptor Kinase, Modulates Plant Responses to Drought Stress by Phosphorylating Protein Phosphatase 2Cs. Frontiers in Plant Science, 2019, 10, 1146.	3.6	31
5	Rheostatic Control of ABA Signaling through HOS15-Mediated OST1 Degradation. Molecular Plant, 2019, 12, 1447-1462.	8.3	58
6	Role and Functional Differences of HKT1-Type Transporters in Plants under Salt Stress. International Journal of Molecular Sciences, 2019, 20, 1059.	4.1	78
7	Metabolic Adjustment of Arabidopsis Root Suspension Cells During Adaptation to Salt Stress and Mitotic Stress Memory. Plant and Cell Physiology, 2019, 60, 612-625.	3.1	24
8	It's Hard to Avoid Avoidance: Uncoupling the Evolutionary Connection between Plant Growth, Productivity and Stress "Tolerance― International Journal of Molecular Sciences, 2018, 19, 3671.	4.1	29
9	Arabidopsis AGDP1 links H3K9me2 to DNA methylation in heterochromatin. Nature Communications, 2018, 9, 4547.	12.8	66
10	Mutations in a subfamily of abscisic acid receptor genes promote rice growth and productivity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6058-6063.	7.1	284
11	Epigenetic switch from repressive to permissive chromatin in response to cold stress. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E5400-E5409.	7.1	157
12	Arabidopsis Duodecuple Mutant of PYL ABA Receptors Reveals PYL Repression of ABA-Independent SnRK2 Activity. Cell Reports, 2018, 23, 3340-3351.e5.	6.4	153
13	Control of Plant Water Use by ABA Induction of Senescence and Dormancy: An Overlooked Lesson from Evolution. Plant and Cell Physiology, 2017, 58, 1319-1327.	3.1	51
14	The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. PLoS Genetics, 2016, 12, e1006416.	3.5	91
15	A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance. Plant Physiology, 2016, 171, 2112-2126.	4.8	93
16	ABA receptor PYL9 promotes drought resistance and leaf senescence. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1949-1954.	7.1	508
17	Pathogen Associated Molecular Pattern (PAMP)-Triggered Immunity Is Compromised under C-Limited Growth. Molecules and Cells, 2015, 38, 40-50.	2.6	6
18	A novel thiol-reductase activity of Arabidopsis YUC6 confers drought tolerance independently of auxin biosynthesis. Nature Communications, 2015, 6, 8041.	12.8	82

#	Article	IF	CITATIONS
19	Using Arabidopsis-Related Model Species (ARMS): Growth, Genetic Transformation, and Comparative Genomics. Methods in Molecular Biology, 2014, 1062, 27-51.	0.9	8
20	The Role of the Epigenome in Gene Expression Control and the Epimark Changes in Response to the Environment. Critical Reviews in Plant Sciences, 2014, 33, 64-87.	5.7	31
21	Biotechnology for mechanisms that counteract salt stress in extremophile species: a genome-based view. Plant Biotechnology Reports, 2013, 7, 27-37.	1.5	24
22	Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nature Communications, 2013, 4, 1352.	12.8	220
23	Overexpression of Arabidopsis YUCCA6 in Potato Results in High-Auxin Developmental Phenotypes and Enhanced Resistance to Water Deficit. Molecular Plant, 2013, 6, 337-349.	8.3	174
24	The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 2013, 6, 275-286.	8.3	528
25	A Saccharomyces cerevisiae Assay System to Investigate Ligand/AdipoR1 Interactions That Lead to Cellular Signaling. PLoS ONE, 2013, 8, e65454.	2.5	12
26	A Vacuolar β-Glucosidase Homolog That Possesses Glucose-Conjugated Abscisic Acid Hydrolyzing Activity Plays an Important Role in Osmotic Stress Responses in <i>Arabidopsis</i> . Plant Cell, 2012, 24, 2184-2199.	6.6	251
27	Regulation of <i>miR399f</i> Transcription by AtMYB2 Affects Phosphate Starvation Responses in Arabidopsis Â. Plant Physiology, 2012, 161, 362-373.	4.8	146
28	Arabidopsis <i>ECERIFERUM9</i> Involvement in Cuticle Formation and Maintenance of Plant Water Status Â. Plant Physiology, 2012, 159, 930-944.	4.8	150
29	TsHKT1;2, a HKT1 Homolog from the Extremophile Arabidopsis Relative <i>Thellungiella salsuginea</i> , Shows K+ Specificity in the Presence of NaCl Â. Plant Physiology, 2012, 158, 1463-1474.	4.8	161
30	The scope of things to come. , 2012, , 19-34.		1
31	Mutation in SUMO E3 ligase, SIZ1, Disrupts the Mature Female Gametophyte in Arabidopsis. PLoS ONE, 2012, 7, e29470.	2.5	28
32	Transcription profiling of laser microdissected microsporocytes in an Arabidopsis mutant (Atmcc1) with enhanced histone acetylation. Journal of Plant Biology, 2012, 55, 281-289.	2.1	6
33	Ethylene signalling is involved in regulation of phosphate starvationâ€induced gene expression and production of acid phosphatases and anthocyanin in <i>Arabidopsis</i> . New Phytologist, 2011, 189, 1084-1095.	7.3	172
34	Adiponectin and Plant-Derived Mammalian Adiponectin Homolog Exert a Protective Effect in Murine Colitis. Digestive Diseases and Sciences, 2011, 56, 2818-2832.	2.3	33
35	Identification and Molecular Properties of SUMO-Binding Proteins in Arabidopsis. Molecules and Cells, 2011, 32, 143-152.	2.6	39
36	Stress-adapted extremophiles provide energy without interference with food production. Food Security, 2011, 3, 93-105.	5.3	36

#	Article	IF	CITATIONS
37	NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis. Phytochemistry, 2011, 72, 330-336.	2.9	12
38	YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana. Journal of Experimental Botany, 2011, 62, 3981-3992.	4.8	195
39	The genome of the extremophile crucifer Thellungiella parvula. Nature Genetics, 2011, 43, 913-918.	21.4	318
40	The <i>glossyhead1</i> Allele of <i>ACC1</i> Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis Â. Plant Physiology, 2011, 157, 1079-1092.	4.8	62
41	Functional characterization of the SIZ/PIASâ€ŧype SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice. Plant, Cell and Environment, 2010, 33, 1923-1934.	5.7	85
42	The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant Journal, 2010, 61, 495-506.	5.7	268
43	Histone hyperacetylation affects meiotic recombination and chromosome segregation in Arabidopsis. Plant Journal, 2010, 62, 796-806.	5.7	62
44	Auxin-Mediated Ribosomal Biogenesis Regulates Vacuolar Trafficking in <i>Arabidopsis</i> Â. Plant Cell, 2010, 22, 143-158.	6.6	82
45	Use of the Plant Defense Protein Osmotin To Identify Fusarium oxysporum Genes That Control Cell Wall Properties. Eukaryotic Cell, 2010, 9, 558-568.	3.4	19
46	A comparative study of salt tolerance parameters in 11 wild relatives of Arabidopsis thaliana. Journal of Experimental Botany, 2010, 61, 3787-3798.	4.8	126
47	Consequences of SOS1 deficiency. Plant Signaling and Behavior, 2010, 5, 766-768.	2.4	4
48	Structural and functional studies of SIZ1, a PIAS-type SUMO E3 ligase from <i>Arabidopsis</i> . Plant Signaling and Behavior, 2010, 5, 567-569.	2.4	10
49	Genome Structures and Halophyte-Specific Gene Expression of the Extremophile <i>Thellungiella parvula</i> in Comparison with <i>Thellungiella salsuginea</i> (<i>Thellungiella halophila</i>) and Arabidopsis. Plant Physiology, 2010, 154, 1040-1052.	4.8	97
50	Intracellular consequences of SOS1 deficiency during salt stress. Journal of Experimental Botany, 2010, 61, 1205-1213.	4.8	139
51	The Phosphate Transporter PHT4;6 Is a Determinant of Salt Tolerance that Is Localized to the Golgi Apparatus of Arabidopsis. Molecular Plant, 2009, 2, 535-552.	8.3	83
52	HOS3, an ELO-Like Gene, Inhibits Effects of ABA and Implicates a S-1-P/Ceramide Control System for Abiotic Stress Responses in Arabidopsis thaliana. Molecular Plant, 2009, 2, 138-151.	8.3	48
53	Specific Domain Structures Control Abscisic Acid-, Salicylic Acid-, and Stress-Mediated SIZ1 Phenotypes. Plant Physiology, 2009, 151, 1930-1942.	4.8	55
54	SOS1 and Halophytism. Plant Signaling and Behavior, 2009, 4, 1081-1083.	2.4	18

#	Article	IF	CITATIONS
55	Loss of Halophytism by Interference with SOS1 Expression. Plant Physiology, 2009, 151, 210-222.	4.8	254
56	Mutants of the Arabidopsis thaliana Cation/H+ Antiporter AtNHX1 Conferring Increased Salt Tolerance in Yeast. Journal of Biological Chemistry, 2009, 284, 14276-14285.	3.4	71
57	NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes and Development, 2009, 23, 318-330.	5.9	126
58	Highly efficient in vitro adventitious shoot regeneration of peppermint (Mentha x piperita L.) using internodal explants. In Vitro Cellular and Developmental Biology - Plant, 2009, 45, 435-440.	2.1	10
59	The Arabidopsis <i>RESURRECTION1</i> Gene Regulates a Novel Antagonistic Interaction in Plant Defense to Biotrophs and Necrotrophs. Plant Physiology, 2009, 151, 290-305.	4.8	56
60	Chapter 11 Unexpected Turns and Twists in Structure/Function of PR-Proteins that Connect Energy Metabolism and Immunity. Advances in Botanical Research, 2009, 51, 439-489.	1.1	18
61	The SUMO E3 ligase, <i>AtSIZ1</i> , regulates flowering by controlling a salicylic acidâ€mediated floral promotion pathway and through affects on <i>FLC</i> chromatin structure. Plant Journal, 2008, 53, 530-540.	5.7	216
62	Reactive oxygen species mediate Na ⁺ â€induced <i>SOS1</i> mRNA stability in Arabidopsis. Plant Journal, 2008, 53, 554-565.	5.7	214
63	Genetic Engineering for Salinity Stress Tolerance. Advances in Plant Biochemistry and Molecular Biology, 2008, , 347-384.	0.5	13
64	Involvement of <i>Arabidopsis</i> HOS15 in histone deacetylation and cold tolerance. Proceedings of the United States of America, 2008, 105, 4945-4950.	7.1	293
65	The Arabidopsis Kinase-Associated Protein Phosphatase Regulates Adaptation to Na ⁺ Stress. Plant Physiology, 2008, 146, 612-622.	4.8	30
66	<i>yucca6</i> , a Dominant Mutation in Arabidopsis, Affects Auxin Accumulation and Auxin-Related Phenotypes. Plant Physiology, 2007, 145, 722-735.	4.8	138
67	Regulation of Plant Innate Immunity by SUMO E3 Ligase. Plant Signaling and Behavior, 2007, 2, 253-254.	2.4	14
68	SIZ1-Mediated Sumoylation of ICE1 Controls CBF3/DREB1A Expression and Freezing Tolerance in Arabidopsis. Plant Cell, 2007, 19, 1403-1414.	6.6	652
69	An Enhancer Mutant of Arabidopsis salt overly sensitive 3 Mediates both Ion Homeostasis and the Oxidative Stress Response. Molecular and Cellular Biology, 2007, 27, 5214-5224.	2.3	127
70	Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature, 2007, 447, 735-738.	27.8	225
71	Sodium Stress in the Halophyte <i>Thellungiella halophila</i> and Transcriptional Changes in a <i>thsos1</i> â€RNA Interference Line. Journal of Integrative Plant Biology, 2007, 49, 1484-1496.	8.5	53
72	Protease inhibitors from several classes work synergistically against Callosobruchus maculatus. Journal of Insect Physiology, 2007, 53, 734-740.	2.0	45

#	Article	IF	CITATIONS
73	Salicylic acid-mediated innate immunity in Arabidopsis is regulated by SIZ1 SUMO E3 ligase. Plant Journal, 2006, 49, 79-90.	5.7	271
74	ldentification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany, 2006, 57, 1119-1128.	4.8	65
75	SIZ1 Small Ubiquitin-Like Modifier E3 Ligase Facilitates Basal Thermotolerance in Arabidopsis Independent of Salicylic Acid. Plant Physiology, 2006, 142, 1548-1558.	4.8	164
76	Arabidopsis Carboxyl-Terminal Domain Phosphatase-Like Isoforms Share Common Catalytic and Interaction Domains But Have Distinct in Planta Functions. Plant Physiology, 2006, 142, 586-594.	4.8	41
77	The Arabidopsis Tetratricopeptide Repeat-Containing Protein TTL1 Is Required for Osmotic Stress Responses and Abscisic Acid Sensitivity. Plant Physiology, 2006, 142, 1113-1126.	4.8	97
78	Osmogenetics: Aristotle to Arabidopsis. Plant Cell, 2006, 18, 1542-1557.	6.6	78
79	Unraveling salt tolerance in crops. Nature Genetics, 2005, 37, 1029-1030.	21.4	38
80	Mutations in a Conserved Replication Protein Suppress Transcriptional Gene Silencing in a DNA- Methylation-Independent Manner in Arabidopsis. Current Biology, 2005, 15, 1912-1918.	3.9	68
81	Abiotic Stress and Plant Genome Evolution. Search for New Models. Plant Physiology, 2005, 138, 127-130.	4.8	124
82	HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9966-9971.	7.1	173
83	The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7760-7765.	7.1	556
84	Comparison of Chemical Characteristics of Three Soybean Cysteine Proteinase Inhibitors. Journal of Agricultural and Food Chemistry, 2005, 53, 1591-1597.	5.2	4
85	Osmotin Is a Homolog of Mammalian Adiponectin and Controls Apoptosis in Yeast through a Homolog of Mammalian Adiponectin Receptor. Molecular Cell, 2005, 17, 171-180.	9.7	179
86	Soyacystatin N Inhibits Proteolysis of Wheat α-Amylase Inhibitor and Potentiates Toxicity Against Cowpea Weevil. Journal of Economic Entomology, 2004, 97, 2095-2100.	1.8	11
87	Soyacystatin N Inhibits Proteolysis of Wheat α-Amylase Inhibitor and Potentiates Toxicity Against Cowpea Weevil. Journal of Economic Entomology, 2004, 97, 2095-2100.	1.8	19
88	Uncoupling the Effects of Abscisic Acid on Plant Growth and Water Relations. Analysis of sto1/nced3, an Abscisic Acid-Deficient but Salt Stress-Tolerant Mutant in Arabidopsis. Plant Physiology, 2004, 136, 3134-3147.	4.8	156
89	Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 14539-14544.	7.1	108
90	AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 2004, 136, 2500-2511.	4.8	297

#	Article	IF	CITATIONS
91	Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles. Plant Physiology, 2004, 135, 1718-1737.	4.8	447
92	An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9873-9878.	7.1	236
93	Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Science, 2004, 166, 609-616.	3.6	108
94	Inorganic Cations Mediate Plant PR5 Protein Antifungal Activity through Fungal Mnn1- and Mnn4-Regulated Cell Surface Glycans. Molecular Plant-Microbe Interactions, 2004, 17, 780-788.	2.6	26
95	Identification of a locus controlling Verticillium disease symptom response in Arabidopsis thaliana. Plant Journal, 2003, 35, 574-587.	5.7	155
96	Overexpression of a cell wall glycoprotein in Fusarium oxysporum increases virulence and resistance to a plant PR-5 protein. Plant Journal, 2003, 36, 390-400.	5.7	41
97	Crystal structure of osmotin, a plant antifungal protein. Proteins: Structure, Function and Bioinformatics, 2003, 54, 170-173.	2.6	101
98	Can the Quest for Drought Tolerant Crops AvoidArabidopsisAny Longer?. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2003, 7, 99-129.	0.4	4
99	Identification of Regions of the Tomato Î ³ -Glutamyl Kinase That Are Involved in Allosteric Regulation by Proline. Journal of Biological Chemistry, 2003, 278, 14203-14210.	3.4	39
100	The STT3a Subunit Isoform of the Arabidopsis Oligosaccharyltransferase Controls Adaptive Responses to Salt/Osmotic Stress. Plant Cell, 2003, 15, 2273-2284.	6.6	202
101	In Defense against Pathogens. Both Plant Sentinels and Foot Soldiers Need to Know the Enemy,. Plant Physiology, 2003, 131, 1580-1590.	4.8	122
102	An Osmotically Induced Cytosolic Ca2+ Transient Activates Calcineurin Signaling to Mediate Ion Homeostasis and Salt Tolerance of Saccharomyces cerevisiae. Journal of Biological Chemistry, 2002, 277, 33075-33080.	3.4	133
103	The ascorbic acid cycle mediates signal transduction leading to stress-induced stomatal closure. Functional Plant Biology, 2002, 29, 845.	2.1	23
104	Cuticular Waxes on Arabidopsis thaliana Close Relatives Thellungiella halophila and Thellungiella parvula. International Journal of Plant Sciences, 2002, 163, 309-315.	1.3	29
105	C-terminal domain phosphatase-like family members (AtCPLs) differentially regulate Arabidopsis thaliana abiotic stress signaling, growth, and development. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10893-10898.	7.1	146
106	OSM1/SYP61: A Syntaxin Protein in Arabidopsis Controls Abscisic Acid–Mediated and Non-Abscisic Acid–Mediated Responses to Abiotic Stress. Plant Cell, 2002, 14, 3009-3028.	6.6	204
107	Repression of stress-responsive genes by FIERY2, a novel transcriptional regulator in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10899-10904.	7.1	137
108	Salt causes ion disequilibriumâ€induced programmed cell death in yeast and plants. Plant Journal, 2002, 29, 649-659.	5.7	261

#	Article	IF	CITATIONS
109	Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant Journal, 2002, 30, 529-539.	5.7	491
110	Does proline accumulation play an active role in stress-induced growth reduction?. Plant Journal, 2002, 31, 699-712.	5.7	357
111	The Long and Winding Road to Halotolerance Genes. , 2002, , 505-533.		10
112	Review: Unravelling the functional relationship between root anatomy and stress tolerance. Functional Plant Biology, 2001, 28, 999.	2.1	56
113	A Plant Defense Response Effector Induces Microbial Apoptosis. Molecular Cell, 2001, 8, 921-930.	9.7	151
114	Resistance to the plant PR-5 protein osmotin in the model fungus Saccharomyces cerevisiae is mediated by the regulatory effects of SSD1 on cell wall composition. Plant Journal, 2001, 25, 271-280.	5.7	53
115	Phage display selection of hairpin loop soyacystatin variants that mediate high affinity inhibition of a cysteine proteinase. Plant Journal, 2001, 27, 383-391.	5.7	23
116	A genomics approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2001, 39, 295-311.	5.8	176
117	Bioengineering mint crop improvement. Plant Cell, Tissue and Organ Culture, 2001, 64, 133-144.	2.3	32
118	Tobacco and Arabidiopsis SLT1 mediate salt tolerance of yeast. Plant Molecular Biology, 2001, 45, 489-500.	3.9	19
119	Title is missing!. Molecular Breeding, 2001, 8, 109-118.	2.1	28
120	The effect of genomics on weed management in the 21st century. Weed Science, 2001, 49, 282-289.	1.5	15
121	Genes That Are Uniquely Stress Regulated in Salt Overly Sensitive (sos) Mutants. Plant Physiology, 2001, 126, 363-375.	4.8	160
122	Learning from the Arabidopsis Experience. The Next Gene Search Paradigm. Plant Physiology, 2001, 127, 1354-1360.	4.8	183
123	An In-Gel Assay of a Recombinant Western Corn Rootworm (Diabrotica virgifera virgifera) Cysteine Proteinase Expressed in Yeast. Analytical Biochemistry, 2000, 282, 153-155.	2.4	5
124	Heterotrimeric G-proteins of a filamentous fungus regulate cell wall composition and susceptibility to a plant PR-5 protein. Plant Journal, 2000, 22, 61-69.	5.7	45
125	Fungal cell wall phosphomannans facilitate the toxic activity of a plant PR-5 protein. Plant Journal, 2000, 23, 375-383.	5.7	89
126	PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Biology, 2000, 51, 463-499.	14.3	3,766

#	Article	IF	CITATIONS
127	A plant defensive cystatin (soyacystatin) targets cathepsin Lâ€like digestive cysteine proteinases (DvCALs) in the larval midgut of western corn rootworm (<i>Diabrotica virgifera virgifera</i>). FEBS Letters, 2000, 471, 67-70.	2.8	97
128	Efficient plant regeneration of native spearmint (Mentha spicata L.). In Vitro Cellular and Developmental Biology - Plant, 1999, 35, 333-338.	2.1	13
129	Improved germination under osmotic stress of tobacco plants overexpressing a cell wall peroxidase. FEBS Letters, 1999, 457, 80-84.	2.8	95
130	Identification of a novel DNA-binding protein to osmotin promoter. Science in China Series C: Life Sciences, 1998, 41, 657-663.	1.3	3
131	Phage display selection can differentiate insecticidal activity of soybean cystatins. Plant Journal, 1998, 14, 371-379.	5.7	84
132	Plants use calcium to resolve salt stress. Trends in Plant Science, 1998, 3, 411-412.	8.8	113
133	Osmotin, a Plant Antifungal Protein, Subverts Signal Transduction to Enhance Fungal Cell Susceptibility. Molecular Cell, 1998, 1, 807-817.	9.7	120
134	A Nitrilase-Like Protein Interacts with GCC Box DNA-Binding Proteins Involved in Ethylene and Defense Responses. Plant Physiology, 1998, 118, 867-874.	4.8	50
135	Comparative Analysis of the Regulation of Expression and Structures of Two Evolutionarily Divergent Genes for Δ1-Pyrroline-5-Carboxylate Synthetase from Tomato. Plant Physiology, 1998, 118, 661-674.	4.8	108
136	Coordinate Accumulation of Antifungal Proteins and Hexoses Constitutes a Developmentally Controlled Defense Response during Fruit Ripening in Grape1. Plant Physiology, 1998, 117, 465-472.	4.8	213
137	Stress signaling through Ca2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 9681-9686.	7.1	202
138	Molecular Aspects of Osmotic Stress in Plants. Critical Reviews in Plant Sciences, 1997, 16, 253-277.	5.7	356
139	Regulation of protease inhibitors and plant defense. Trends in Plant Science, 1997, 2, 379-384.	8.8	428
140	Induction of pathogen resistance and pathogenesis-related genes in tobacco by a heat-stable Trichoderma mycelial extract and plant signal messengers. Physiologia Plantarum, 1997, 100, 341-352.	5.2	27
141	Moderately increased constitutive proline does not alter osmotic stress tolerance. Physiologia Plantarum, 1997, 101, 240-246.	5.2	24
142	Tissue-specific activation of the osmotin gene by ABA, C2H4 and NaCl involves the same promoter region. Plant Molecular Biology, 1997, 34, 393-402.	3.9	48
143	Transgenic sorghum plants obtained after microprojectile bombardment of immature inflorescences. In Vitro Cellular and Developmental Biology - Plant, 1997, 33, 92-100.	2.1	53
144	Molecular Aspects of Osmotic Stress in Plants. Critical Reviews in Plant Sciences, 1997, 16, 253-278.	5.7	60

#	Article	IF	CITATIONS
145	Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 1996, 118, 11-23.	3.6	232
146	Identification ofN-acetylglucosamine binding residues inGriffonia simplicifolialectin II. FEBS Letters, 1996, 390, 271-274.	2.8	25
147	In vivo and in vitro activity of truncated osmotin that is secreted into the extracellular matrix. Plant Science, 1996, 121, 123-131.	3.6	32
148	Large quantities of recombinant PR-5 proteins from the extracellular matrix of tobacco: Rapid production of microbial-recalcitrant proteins. Plant Molecular Biology Reporter, 1996, 14, 249-260.	1.8	3
149	Alterations in cell membrane structure and expression of a membrane-associated protein after adaptation to osmotic stress. Physiologia Plantarum, 1996, 98, 505-516.	5.2	18
150	Alterations in cell membrane structure and expression of a membrane-associated protein after adaptation to osmotic stress. Physiologia Plantarum, 1996, 98, 505-516.	5.2	20
151	Activated Calcineurin Confers High Tolerance to Ion Stress and Alters the Budding Pattern and Cell Morphology of Yeast Cells. Journal of Biological Chemistry, 1996, 271, 23061-23067.	3.4	99
152	Fine structure and function of the osmotin gene promoter. Plant Molecular Biology, 1995, 29, 1015-1026.	3.9	20
153	Osmotin gene expression is controlled by elicitor synergism. Physiologia Plantarum, 1995, 95, 620-626.	5.2	13
154	Control of osmotin gene expression by ABA and osmotic stress in vegetative tissues of wild-type and ABA-deficient mutants of tomato. Physiologia Plantarum, 1995, 93, 498-504.	5.2	36
155	Control of osmotin gene expression by ABA and osmotic stress in vegetative tissues of wild-type and ABA-deficient mutants of tomato. Physiologia Plantarum, 1995, 93, 498-504.	5.2	26
156	Osmotin gene expression is controlled by elicitor synergism. Physiologia Plantarum, 1995, 95, 620-626.	5.2	11
157	Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell, 1994, 6, 1077.	6.6	107
158	Characterization and in situ localization of a salt-induced tomato peroxidase mRNA. Plant Molecular Biology, 1994, 25, 105-114.	3.9	64
159	A NaCl-regulated plant gene encoding a brain protein homolog that activates ADP ribosyltransferase and inhibits protein kinase C. Plant Journal, 1994, 6, 729-740.	5.7	54
160	Structure, Regulation and Function of the Osmotin Gene. , 1994, , 381-414.		11
161	Plasma-membrane H+-ATPase gene expression is regulated by NaCl in cells of the halophyte Atriplex nummularia L. Planta, 1993, 190, 433-8.	3.2	67
162	Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter. Plant Molecular Biology, 1993, 23, 1117-1128.	3.9	58

#	Article	IF	CITATIONS
163	Enrichment of vitronectin- and fibronectin-like proteins in NaCl-adapted plant cells and evidence for their involvement in plasma membrane-cell wall adhesion. Plant Journal, 1993, 3, 637-646.	5.7	106
164	Quantitative mRNA-PCR for expression analysis of low-abundance transcripts. Plant Molecular Biology Reporter, 1993, 11, 237-248.	1.8	7
165	Modification of Proton Transport Kinetics of the Plasma Membrane H+-ATPase after Adaptation of Tobacco Cells to NaCI. Journal of Plant Physiology, 1993, 142, 312-318.	3.5	15
166	Osmotin Gene Expression Is Posttranscriptionally Regulated. Plant Physiology, 1992, 100, 409-415.	4.8	110
167	Induction of a Putative Ca2+-ATPase mRNA in NaCl-Adapted Cells. Plant Physiology, 1992, 100, 1471-1478.	4.8	87
168	Regulation of the Osmotin Gene Promoter. Plant Cell, 1992, 4, 513.	6.6	22
169	Analysis of structure and transcriptional activation of an osmotin gene. Plant Molecular Biology, 1992, 19, 577-588.	3.9	85
170	Expression of Osmotin-Like Genes in the Halophyte Atriplex nummularia L. Plant Physiology, 1992, 99, 329-337.	4.8	37
171	PHYSIOLOGICAL AND HERITABLE CHANGES IN CYCLIC AMP LEVELS ASSOCIATED WITH CHANGES IN FLAGELLAR FORMATION IN CHLAMYDOMONAS REINHARDTII (CHLOROPHYTA)1. Journal of Phycology, 1991, 27, 587-591.	2.3	7
172	Estimation of Growth Yield and Maintenance Coefficient of Plant Cell Suspensions. Biotechnology and Bioengineering, 1991, 38, 1131-1136.	3.3	25
173	Growth Yields and Maintenance Coefficients of Unadapted and NaCl-Adapted Tobacco Cells Grown in Semicontinuous Culture. Plant Physiology, 1991, 96, 1289-1293.	4.8	13
174	NaCl Regulation of Tonoplast ATPase 70-Kilodalton Subunit mRNA in Tobacco Cells. Plant Physiology, 1991, 97, 562-568.	4.8	115
175	Enhanced Net K ⁺ Uptake Capacity of NaCl-Adapted Cells. Plant Physiology, 1991, 95, 1265-1269.	4.8	90
176	Elevated Accumulation of Proline in NaCl-Adapted Tobacco Cells Is Not Due to Altered Δ ¹ -Pyrroline-5-Carboxylate Reductase. Plant Physiology, 1991, 96, 245-250.	4.8	57
177	Isolation and Partial Characterization of a Seed Lectin from Tepary Bean that Delays Bruchid Beetle Development. Plant Physiology, 1990, 93, 1453-1459.	4.8	42
178	Carbon Use Efficiency and Cell Expansion of NaCl-Adapted Tobacco Cells. Plant Physiology, 1990, 93, 384-388.	4.8	21
179	Reduced Cell Expansion and Changes in Cell Walls of Plant Cells Adapted to NaCl. , 1990, , 137-171.		40
180	Cell Walls of Tobacco Cells and Changes in Composition Associated with Reduced Growth upon Adaptation to Water and Saline Stress. Plant Physiology, 1989, 91, 48-53.	4.8	103

#	Article	IF	CITATIONS
181	Extracellular Polysaccharides and Proteins of Tobacco Cell Cultures and Changes in Composition Associated with Growth-Limiting Adaptation to Water and Saline Stress. Plant Physiology, 1989, 91, 54-61.	4.8	76
182	Alteration of the Physical and Chemical Structure of the Primary Cell Wall of Growth-Limited Plant Cells Adapted to Osmotic Stress. Plant Physiology, 1989, 91, 39-47.	4.8	174
183	Molecular Cloning of Osmotin and Regulation of Its Expression by ABA and Adaptation to Low Water Potential. Plant Physiology, 1989, 90, 1096-1101.	4.8	273
184	Stable NaCl Tolerance of Tobacco Cells Is Associated with Enhanced Accumulation of Osmotin. Plant Physiology, 1989, 91, 855-861.	4.8	78
185	Intracellular Compartmentation of Ions in Salt Adapted Tobacco Cells. Plant Physiology, 1988, 86, 607-614.	4.8	252
186	Characterization of Osmotin. Plant Physiology, 1987, 85, 529-536.	4.8	446
187	Abscisic Acid Stimulated Osmotic Adjustment and Its Involvement in Adaptation of Tobacco Cells to NaCl. Plant Physiology, 1987, 85, 174-181.	4.8	133
188	Solute Accumulation in Tobacco Cells Adapted to NaCl. Plant Physiology, 1987, 84, 1408-1415.	4.8	168
189	Proline Accumulation and the Adaptation of Cultured Plant Cells to Water Stress. Plant Physiology, 1986, 80, 938-945.	4.8	214
190	Metabolic Changes Associated with Adaptation of Plant Cells to Water Stress. Plant Physiology, 1986, 82, 890-903.	4.8	233
191	Carbon Assimilation in Carrot Cells in Liquid Culture. Plant Physiology, 1986, 82, 363-368.	4.8	73
192	Genotypic diversity enhances recovery of hybrids and fertile backcrosses of Phaseolus vulgaris L. � P. acutifolius A. Gray. Euphytica, 1985, 34, 329-334.	1.2	20
193	Adaptation of Tobacco Cells to NaCl. Plant Physiology, 1985, 79, 118-125.	4.8	164
194	Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiology, 1985, 79, 126-137.	4.8	252
195	Abscisic Acid Accelerates Adaptation of Cultured Tobacco Cells to Salt. Plant Physiology, 1985, 79, 138-142.	4.8	89
196	Photoautotrophic potato cells: Transition from heterotrophic to autotrophic growth. Physiologia Plantarum, 1984, 61, 279-286.	5.2	41
197	Occurrence of cyclic adenosine 3?,5?-monophosphate in the phytopathogenic fungi Alternaria solani and Phymatotrichum omnivorum. Archives of Microbiology, 1983, 135, 125-129.	2.2	1
198	Interactions between the kernel N sink, grain yield and protein nutritional quality of maize. Journal of the Science of Food and Agriculture, 1983, 34, 255-263.	3.5	24

#	Article	IF	CITATIONS
199	Solutes Contributing to Osmotic Adjustment in Cultured Plant Cells Adapted to Water Stress. Plant Physiology, 1983, 73, 834-843.	4.8	185
200	Clonal Variation for Tolerance to Polyethylene Glycol-Induced Water Stress in Cultured Tomato Cells. Plant Physiology, 1983, 72, 645-653.	4.8	37
201	Characteristics of Cultured Tomato Cells after Prolonged Exposure to Medium Containing Polyethylene Glycol. Plant Physiology, 1982, 69, 514-521.	4.8	73
202	Growth and Water Relations of Cultured Tomato Cells after Adjustment to Low External Water Potentials. Plant Physiology, 1982, 70, 1303-1309.	4.8	60