## Svetomir B Tzokov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079850/publications.pdf Version: 2024-02-01



0

| #  | Article                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A.<br>baumannii. Communications Biology, 2021, 4, 817.                                                                                 | 4.4  | 31        |
| 2  | The structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding. Nature Communications, 2021, 12, 5166.                                                               | 12.8 | 10        |
| 3  | Oligomerization of the FliF Domains Suggests a Coordinated Assembly of the Bacterial Flagellum MS<br>Ring. Frontiers in Microbiology, 2021, 12, 781960.                                                                             | 3.5  | 7         |
| 4  | Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces<br>Illustrate a General Protective Strategy across Spore Formers. MSphere, 2020, 5, .                                             | 2.9  | 12        |
| 5  | The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation. Nature Communications, 2020, 11, 3210.                                                                         | 12.8 | 16        |
| 6  | Identification and structural analysis of the tripartite α-pore forming toxin of Aeromonas hydrophila.<br>Nature Communications, 2019, 10, 2900.                                                                                    | 12.8 | 20        |
| 7  | The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea<br>phaphyphila, a representative of a new lyase family, PL39. Journal of Biological Chemistry, 2019, 294,<br>18077-18091.              | 3.4  | 37        |
| 8  | Selfâ€Assembling Proteins as Highâ€Performance Substrates for Embryonic Stem Cell Selfâ€Renewal.<br>Advanced Materials, 2019, 31, 1807521.                                                                                          | 21.0 | 6         |
| 9  | Structural insights into the function of type VI secretion system TssA subunits. Nature Communications, 2018, 9, 4765.                                                                                                              | 12.8 | 41        |
| 10 | Characterization of the spore surface and exosporium proteins of Clostridium sporogenes;<br>implications for Clostridium botulinum group I strains. Food Microbiology, 2016, 59, 205-212.                                           | 4.2  | 21        |
| 11 | Diverse supramolecular structures formed by selfâ€assembling proteins of the<br><scp><i>B</i></scp> <i>acillus subtilis</i> spore coat. Molecular Microbiology, 2015, 97, 347-359.                                                  | 2.5  | 41        |
| 12 | An "off-the shelf" synthetic membrane to simplify regeneration of damaged corneas. , 2014, , .                                                                                                                                      |      | 0         |
| 13 | Structure and Function of the Bacterial Heterodimeric ABC Transporter CydDC. Journal of Biological Chemistry, 2014, 289, 23177-23188.                                                                                               | 3.4  | 16        |
| 14 | Surface architecture of endospores of the <i>Bacillus cereus/anthracis/thuringiensis</i> family at the subnanometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16014-16019. | 7.1  | 67        |
| 15 | Structure of the Hemolysin E (HlyE, ClyA, and SheA) Channel in Its Membrane-bound Form. Journal of<br>Biological Chemistry, 2006, 281, 23042-23049.                                                                                 | 3.4  | 47        |
| 16 | PHOSPHONYLATION BY A SPIROPHOSPHORANE: APPLICATION OF THE RIBOZYME CHEMISTRY IN THE BIOORGANIC SYNTHESIS. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 1095-1111.                                            | 1.6  | 2         |
| 17 | Investigating catalytic RNA molecules. , 2002, , .                                                                                                                                                                                  |      | 0         |

18 Kinetic studies of the Neurospora VS ribozyme. , 2002, , .

| #  | Article                                                                                                                                                                                                       | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | H-TETRAOXASPIROPHOSPHORANES AS POSSIBLE INTERMEDIATES IN THE PHOSPHONYLATION BY<br>PHOSPHOROUS ACID/OXIRANES. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 166,<br>187-196.                 | 1.6  | 10        |
| 20 | Change of the Hydrolytic Mechanism of 2-Hydroxy H-Phosphonodiesters in Aprotic Organic<br>Media.cis-1,2-Diol Monoanions as Leaving Groups. Journal of the American Chemical Society, 1999, 121,<br>5103-5107. | 13.7 | 18        |
| 21 | Biomimetic Phosphonylation and Phosphorylation of Glycoses and Deoxynucleosides. Angewandte<br>Chemie International Edition in English, 1994, 33, 2302-2303.                                                  | 4.4  | 14        |
| 22 | Biomimetische Phosphonylierung und Phosphorylierung von Glycosen und Desoxynucleosiden.<br>Angewandte Chemie, 1994, 106, 2401-2402.                                                                           | 2.0  | 5         |