Svetomir B Tzokov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1079850/publications.pdf

Version: 2024-02-01

22 papers 427 citations

759233 12 h-index 19 g-index

27 all docs

27 docs citations

27 times ranked

626 citing authors

#	Article	IF	Citations
1	Surface architecture of endospores of the <i>Bacillus cereus/anthracis/thuringiensis</i> family at the subnanometer scale. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16014-16019.	7.1	67
2	Structure of the Hemolysin E (HlyE, ClyA, and SheA) Channel in Its Membrane-bound Form. Journal of Biological Chemistry, 2006, 281, 23042-23049.	3.4	47
3	Diverse supramolecular structures formed by selfâ€assembling proteins of the <scp><i>B</i></scp> <i>acillus subtilis</i> spore coat. Molecular Microbiology, 2015, 97, 347-359.	2.5	41
4	Structural insights into the function of type VI secretion system TssA subunits. Nature Communications, 2018, 9, 4765.	12.8	41
5	The molecular basis of endolytic activity of a multidomain alginate lyase from Defluviitalea phaphyphila, a representative of a new lyase family, PL39. Journal of Biological Chemistry, 2019, 294, 18077-18091.	3.4	37
6	Structure and lipid dynamics in the maintenance of lipid asymmetry inner membrane complex of A. baumannii. Communications Biology, 2021, 4, 817.	4.4	31
7	Characterization of the spore surface and exosporium proteins of Clostridium sporogenes; implications for Clostridium botulinum group I strains. Food Microbiology, 2016, 59, 205-212.	4.2	21
8	Identification and structural analysis of the tripartite \hat{l}_{\pm} -pore forming toxin of Aeromonas hydrophila. Nature Communications, 2019, 10, 2900.	12.8	20
9	Change of the Hydrolytic Mechanism of 2-Hydroxy H-Phosphonodiesters in Aprotic Organic Media.cis-1,2-Diol Monoanions as Leaving Groups. Journal of the American Chemical Society, 1999, 121, 5103-5107.	13.7	18
10	Structure and Function of the Bacterial Heterodimeric ABC Transporter CydDC. Journal of Biological Chemistry, 2014, 289, 23177-23188.	3.4	16
11	The cryo-EM structure of the bacterial flagellum cap complex suggests a molecular mechanism for filament elongation. Nature Communications, 2020, 11, 3210.	12.8	16
12	Biomimetic Phosphonylation and Phosphorylation of Glycoses and Deoxynucleosides. Angewandte Chemie International Edition in English, 1994, 33, 2302-2303.	4.4	14
13	Architecture and Self-Assembly of Clostridium sporogenes and Clostridium botulinum Spore Surfaces Illustrate a General Protective Strategy across Spore Formers. MSphere, 2020, 5, .	2.9	12
14	H-TETRAOXASPIROPHOSPHORANES AS POSSIBLE INTERMEDIATES IN THE PHOSPHONYLATION BY PHOSPHOROUS ACID/OXIRANES. Phosphorus, Sulfur and Silicon and the Related Elements, 2000, 166, 187-196.	1.6	10
15	The structure of the bacterial DNA segregation ATPase filament reveals the conformational plasticity of ParA upon DNA binding. Nature Communications, 2021, 12, 5166.	12.8	10
16	Oligomerization of the FliF Domains Suggests a Coordinated Assembly of the Bacterial Flagellum MS Ring. Frontiers in Microbiology, 2021, 12, 781960.	3.5	7
17	Selfâ€Assembling Proteins as Highâ€Performance Substrates for Embryonic Stem Cell Selfâ€Renewal. Advanced Materials, 2019, 31, 1807521.	21.0	6
18	Biomimetische Phosphonylierung und Phosphorylierung von Glycosen und Desoxynucleosiden. Angewandte Chemie, 1994, 106, 2401-2402.	2.0	5

#	Article	IF	CITATIONS
19	PHOSPHONYLATION BY A SPIROPHOSPHORANE: APPLICATION OF THE RIBOZYME CHEMISTRY IN THE BIOORGANIC SYNTHESIS. Phosphorus, Sulfur and Silicon and the Related Elements, 2004, 179, 1095-1111.	1.6	2
20	An & amp; $\#x201C$; off-the shelf amp; $\#x201D$; synthetic membrane to simplify regeneration of damaged corneas., 2014,,.		0
21	Investigating catalytic RNA molecules. , 2002, , .		O
22	Kinetic studies of the Neurospora VS ribozyme. , 2002, , .		0